A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ellagic and tannic acids protect newly synthesized elastic fibers from premature enzymatic degradation in dermal fibroblast cultures. | LitMetric

AI Article Synopsis

  • Progressive degradation of elastic fibers in aging skin cannot be repaired by adult dermal fibroblasts.
  • Research tested the effects of tannic acid (TA) and ellagic acid (EA) on protecting dermal elastin from enzymatic breakdown, discovering both compounds increased elastic fiber production in fibroblast cultures without boosting cell growth or elastin mRNA.
  • The study found that TA and EA enhanced the stability of elastin and reduced its degradation by various enzymes, suggesting these compounds could help maintain elastic fibers and promote their production in aging skin.

Article Abstract

Progressive proteolytic degradation of cutaneous elastic fibers, that cannot be adequately replaced or repaired by adult dermal fibroblasts, constitutes a major feature of aging skin. Our present investigations, employing monolayer cultures of human dermal fibroblasts and organ cultures of skin biopsies, were aimed at testing whether the hydrophilic tannic acid (TA) and lipophilic ellagic acid (EA) would protect dermal elastin from exogenous and endogenous enzymatic degradation. Results from both culture systems indicated that dermal fibroblasts, maintained with TA or EA, deposit significantly more elastic fibers than untreated control cultures despite the fact that neither polyphenol enhanced transcription of elastin mRNA or cellular proliferation. Results of a pulse and chase experiment showed that pretreatment with both polyphenols enhanced biostability of tropoelastin and newly deposited elastin. Results of in vitro assays indicated that both polyphenols bound to purified elastin and significantly decreased its proteolytic degradation by elastolytic enzymes belonging to the serine proteinase, cysteine proteinase, and metallo-proteinase families. Importantly, both polyphenols also synergistically enhanced elastogenesis induced by selected elastogenic compounds in cultures of dermal fibroblasts. We propose that EA and TA may be useful for preventing proteolytic degradation of existing dermal elastic fibers and for enhancing more efficient elastogenesis in aged skin.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.jid.5700285DOI Listing

Publication Analysis

Top Keywords

elastic fibers
16
dermal fibroblasts
16
proteolytic degradation
12
enzymatic degradation
8
dermal
7
degradation
5
cultures
5
ellagic tannic
4
tannic acids
4
acids protect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!