Changes in the pattern of pyrimidine nucleotide metabolism were investigated in Pinus radiata cotyledons cultured under shoot-forming (SF; +N(6)-benzyladenine) and non-shoot-forming (NSF, -N(6)-benzyladenine) conditions, as well as in cotyledons unresponsive (OLD) to N(6)-benzyladenine. This was carried out by following the metabolic fate of externally supplied (14)C-labeled orotic acid, intermediate of the de novo pathway, and (14)C-labeled uridine and uracil, substrates of the salvage pathway. Nucleic acid synthesis was also investigated by following the metabolic fate of (14)C-labeled thymidine during shoot bud formation and development. The de novo synthesis of pyrimidine nucleotides was operative under both SF and NSF conditions, and the activity of orotate phosphoribosyltransferase (OPRT), a key enzyme of the de novo pathway, was higher in SF tissue. Utilization of both uridine and uracil for nucleotide and nucleic acid synthesis clearly indicated that the salvage pathway of pyrimidine metabolism is also operative during shoot organogenesis. In general, uridine was a better substrate for the synthesis of salvage products than uracil, possibly due to the higher activity of uridine kinase (UK), compared to uracil phosphoribosyltransferase (UPRT). Incorporation of uridine into the nucleic acid fraction of OLD cotyledons was lower than that observed for their responsive (day 0) counterparts. Similarly, uracil utilization for nucleic acid synthesis was lower in NSF cotyledons, compared to that observed for SF tissue after 10 days in culture. This difference was ascribed to higher UPRT activity measured in the latter. Thus, there was an apparent difference in the utilization of nucleotides derived from uracil and uridine for nucleotide synthesis. The increased ability to produce pyrimidine nucleotides via the salvage pathway during shoot bud formation may be required in support of nucleic acid synthesis occurring during the process. Studies on thymidine metabolism confirmed this notion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2006.02.004 | DOI Listing |
Braz J Biol
January 2025
Near East University, Operational Research Center in Healthcare, Mersin, Turkey.
Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.
View Article and Find Full Text PDFSci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Transl Med
January 2025
Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA.
Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.
View Article and Find Full Text PDFPLoS One
January 2025
School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng, China.
Antibiotic resistance is a critical global public health issue. The gut microbiome acts as a reservoir for numerous antibiotic resistance genes (ARGs), which influence both existing and future microbial populations within a community or ecosystem. However, the differences in ARG expression between fresh and composted feces remain poorly understood.
View Article and Find Full Text PDFElife
January 2025
Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States.
Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!