We report density-functional and coupled-cluster calculations on conformation change and degenerate bond shifting in [10]annulene isomers 1-5. At the CCSD(T)/cc-pVDZ//CCSD/6-31G level, conversion of the twist (1) to the heart (2) has a barrier of 10.1 kcal/mol, compared to Ea = 16.2 kcal/mol for degenerate "two-twist" bond shifting in 1. Pseudorotation in the all-cis boat isomer (3) proceeds with a negligible barrier. The naphthalene-like isomer 4 has a 3.9 kcal/mol barrier to degenerate bond shifting. The azulene-like isomer 5 is the only species for which the nature of the bond-equalized form (5-eq) depends on the method. At the CCSD(T)/cc-pVDZ//CCSD/6-31G level, 5-eq is 1.2 kcal/mol more stable than the bond-alternating form 5-alt. Conversion of 5-eq to 4 has a barrier of 12.6 kcal/mol. Despite being significantly nonplanar, both 5-eq and the transition state for bond shifting in 4 are highly aromatic based on magnetic susceptibility exaltations. On the basis of a detailed consideration of these mechanisms and barriers, we can now, with greater confidence, rule out 4 and 5 as candidates to explain the NMR spectra observed by Masamune. Our results support Masamune's original assignments for both isolated isomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo0521450 | DOI Listing |
J Am Chem Soc
January 2025
Department of Physics, Alba Nova Research Center, Stockholm University, Stockholm SE-106 91 Sweden.
Iron-doped nickel oxyhydroxides, Ni(Fe)OH, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed X-ray spectroscopy studies supported by DFT on Ni(Fe)OH electrocatalysts.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA.
Five representatives of a novel type of di(hydroperoxy)alkane adducts of phosphine oxides have been synthesized and fully characterized, including their solubility in organic solvents. The phosphine oxide CyPO () has been used in combination with the corresponding aldehydes to create the adducts CyPO·(HOO)CHCH (), CyPO·(HOO)CHCHCH (), CyPO·(HOO)CH(CH)CH (), CyPO·(HOO)CH(CH)CH (), and CyPO·(HOO)CH(CH)CH (). All adducts crystallize easily and contain the peroxide and phosphine oxide hydrogen-bonded in 1:1 ratios.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India.
Wings are primarily used in flight but also play a role in mating behaviour in many insects. Drosophila species exhibit a variety of pigmentation patterns on their wings. In some sexually dimorphic Drosophilids, a pigmented spot pattern is found at the top-right edge of the male wings.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Technology Madras, Department of Chemistry, Chennai, Chennai, INDIA.
A series of significantly bulky mono- and di-substituted cyclic alkyl-amino carbene (cAAC)- functionalized cyclopentadiene ring (Cp) compounds were synthesized. The functionalization of the Cp ring with cAAC ligands makes them significantly bulkier, while retaining their ligation properties. These compounds display interesting fluorescence properties.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!