Study on mesophilic and thermophilic alcohol dehydrogenases in gas-phase reaction.

Biotechnol Prog

Biochemical Engineering, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.

Published: June 2006

The initial reaction rate and the thermostability of the mesophilic alcohol dehydrogenase (ADH) from Lactobacillus brevis (LBADH), and the thermophilic ADH from Thermoanaerobacter sp. (ADH T) in gas-phase reaction were compared. The effects of water activity, cofactor-to-protein molar ratio, and reaction temperature on the reduction of acetophenone to 1-phenylethanol were studied. An optimal water activity of 0.55 in terms of productivity was found for both ADHs. The cofactor-to-protein molar ratio was chosen slightly higher than equimolar to increase both activity and thermostability. An excellent optimal productivity of 1,000 g x L(-1) x d(-1) for LBADH and 600 g x L(-1) x d(-1)for ADH T was found at 60 degrees C, while the highest total turnover numbers with respect to the enzyme were achieved at 30 degrees C and amounted to 4.2 million for LBADH and 1.7 million for ADH T, respectively. Interestingly, the ADH from the mesophilic L. brevisshowed the higher thermostability in the nonconventional medium gas phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp050316gDOI Listing

Publication Analysis

Top Keywords

gas-phase reaction
8
water activity
8
cofactor-to-protein molar
8
molar ratio
8
adh
6
study mesophilic
4
mesophilic thermophilic
4
thermophilic alcohol
4
alcohol dehydrogenases
4
dehydrogenases gas-phase
4

Similar Publications

A Doped Surface Ionization Method for Ion Mobility Spectrometry.

Rapid Commun Mass Spectrom

March 2025

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.

Rationale: Exhaled breath can be used for early warning of disease, with organic nitrogen compounds, including triethylamine (TEA), being linked to various medical conditions. Surface ionization ion mobility spectrometry (SI-IMS) facilitates the direct detection of TEA in exhaled breath. However, the presence of multiple ionization products of TEA poses challenges for both quantitative and qualitative analyses.

View Article and Find Full Text PDF

Association Kinetics for Perfluorinated -Alkyl Radicals.

J Phys Chem A

December 2024

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

Radical-radical reaction channels are important in the pyrolysis and oxidation chemistry of perfluoroalkyl substances (PFAS). In particular, unimolecular dissociation reactions within unbranched -perfluoroalkyl chains, and their corresponding reverse barrierless association reactions, are expected to be significant contributors to the gas-phase thermal decomposition of families of species such as perfluorinated carboxylic acids and perfluorinated sulfonic acids. Unfortunately, experimental data for these reactions are scarce and uncertain.

View Article and Find Full Text PDF

Synergetic degradation of PFOS by HALT conditions enhanced by Fe-based amorphous alloys.

J Hazard Mater

December 2024

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.

Global concern over per- and polyfluoroalkyl substances (PFASs), especially perfluorooctane sulfonate (PFOS), disposal prompts the search for effective degradation methods. Subcritical water hydrothermal treatment shows promise but suffers from unclear degradation pathways, hindering engineering application design due to unknown intermediate products. This study introduces Fe-based amorphous alloy to enhance the subcritical water hydrothermal degradation of PFOS, achieving a degradation rate of approximately 85 % under optimized conditions of 325 °C and 1 M sodium bicarbonate (NaHCO₃), compared to 56 % without the alloy.

View Article and Find Full Text PDF

[Progress in applications of ambient ionization mass spectrometry for lipids identification].

Se Pu

January 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments.

View Article and Find Full Text PDF

Jumping Dynamics of Cyanomethyl Radicals on Corrugated Graphene/Ru(0001) Substrates.

J Phys Chem C Nanomater Interfaces

December 2024

Instituto IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain.

Graphene adsorbed on Ru(0001) has been widely used as a template for adsorbing and isolating molecules, assembling organic-molecule structures with desired geometric and electronic properties and even inducing chemical reactions that are challenging to achieve in the gas phase. To fully exploit the potential of this substrate, for example, by being able to tune a graphene-based catalyst to perform optimally under specific conditions, it is crucial to understand the factors and mechanisms governing the molecule-substrate interaction. To contribute to this effort, we have conducted a combined experimental and theoretical study of the adsorption of cyanomethyl radicals (-CHCN) on this substrate below room temperature by performing scanning tunneling microscopy experiments and density functional theory simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!