Ab initio and semiempirical quantum mechanical calculations were performed to study the electronic spectra of spiroxazine photochromic compounds as well as the corresponding photoisomers. Ground-state geometries were optimized based on density functional theory (DFT). Excitation energies of the different forms were calculated using the time-dependent density functional theory (TD-DFT) method. Semiempirical calculations including configuration interactions were performed to detail the mechanism of ring opening in excited states. On the basis of the obtained potential energy profile, a complete mechanism of photocoloration able to clarify some experimental findings is provided. A correlation of the experimental quantum yield of photocoloration with the calculated properties as a function of substituent effects is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp054976f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!