[Pathways of mercury emissions to atmosphere from closed municipal landfills].

Huan Jing Ke Xue

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.

Published: January 2006

Using the automated mercury vapor analyzer and dynamic flux chamber (DFC) method, the pathways of mercury emissions to atmosphere were measured at a closed landfill in Wuhan, China. The results show that the mainly pathway is by the surface cover, and emissions from vent pipes is negligible. Average Hg fluxes during the observation period was (192.5 +/- 245.3) ng x (m2 x h)(-1), which was 1 - 2 orders of magnitude greater than that from background zone. Hg flux exhibited a clearly diurnal pattern, reaching the maximum near midday and the lowest during night. Solar radiation was the environmental factor that has highest relationship with Hg flux, with coefficient of 0.77, this indicated that photo-reduction of Hg(II) being a prominent process in the production of volatile elemental mercury (Hg(0)). Mercury concentrations in landfill gas (LFG) at different vent pipes averaged from 7.0 - 68.9 ng x m(-3), which was much lower than that of operational landfills, and the flow rate of landfill gas was very slow.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mercury emissions
8
emissions atmosphere
8
vent pipes
8
landfill gas
8
[pathways mercury
4
atmosphere closed
4
closed municipal
4
municipal landfills]
4
landfills] automated
4
mercury
4

Similar Publications

Development of a novel ICT-ESIPT-based NIR ratiometric fluorescent probe for specific detection of Hg in the environment and living organisms.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:

As a heavy metal contaminant, mercury ion (Hg) has caused great harm to environment and life. Mercury ions will migrate and transform in the environment and eventually accumulate in the human body, thus causing human poisoning. Therefore, it is of great significance to detect Hg in the environment and living bodies.

View Article and Find Full Text PDF

The neurotoxin methylmercury in seafood threatens food safety worldwide. China has implemented stringent wastewater policies, established numerous treatment facilities and enforced rigorous water quality standards to address pollution in its waterways. However, the impact of these policies on seafood safety and methylmercury exposure remains unknown.

View Article and Find Full Text PDF

A HPU-23@Ru@Tb-NH sensor array with light-driven oxidase-mimicking activity and triple-emission fluorescence was developed. It was composed of a Tb-functionalized metal organic framework and Ru(bpy) and applied to the simultaneous detection of Hg, ClO, and PO via differently responsive channels. HPU-23@Ru@Tb-NH had a photoresponsive colorimetric response toward Hg with a LOD as low as 4.

View Article and Find Full Text PDF

The ground-based solar telescope THEMIS performed several observations of Mercury's sodium exosphere in years 2011-2013, when the MESSENGER spacecraft was orbiting around the planet. Typical two-peak exospheric patterns were frequently identified. In previous studies, some specific cases of THEMIS Na two-peak observations were characterized and related to IMF conditions, during specific extreme cases, in the occasion of CME arrival.

View Article and Find Full Text PDF

With an obsolete livestock sector, Gabon relies on its huge hydrographic network rich in fish to supply its populations with animal proteins. This study aimed to conduct metal analyses in four fish species () frequently consumed by human populations in the Moyen-Ogooué and Haut-Ogooué Provinces of Gabon and infer the potential human health risks for those populations who rely on these freshwater produces as a source of proteins. Fish were sampled from Ezanga, Oguemoué, Onangué, Nguenè (Moyen-Ogooué) and Grand Poubara (Haut-Ogooué) Lakes during the high flow period (HF) and low flow period (LF) from 2021 to 2022, and analysed for seven heavy metals (HMs) using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!