Presbyopia is an age-related loss of accommodation of the human eye that manifests itself as inability to shift focus from distant to near objects. Assuming no refractive error, presbyopes have clear vision of distant objects; they require reading glasses for viewing near objects. Area-divided bifocal lenses are one example of a treatment for this problem. However, the field of view is limited in such eyeglasses, requiring the user to gaze down to accomplish near-vision tasks and in some cases causing dizziness and discomfort. Here, we report on previously undescribed switchable, flat, liquid-crystal diffractive lenses that can adaptively change their focusing power. The operation of these spectacle lenses is based on electrical control of the refractive index of a 5-mum-thick layer of nematic liquid crystal using a circular array of photolithographically defined transparent electrodes. It operates with high transmission, low voltage (<2 Vrms), fast response (<1 sec), diffraction efficiency > 90%, small aberrations, and a power-failure-safe configuration. These results represent significant advance in state-of-the-art liquid-crystal diffractive lenses for vision care and other applications. They have the potential of revolutionizing the field of presbyopia correction when combined with automatic adjustable focusing power.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458838PMC
http://dx.doi.org/10.1073/pnas.0600850103DOI Listing

Publication Analysis

Top Keywords

distant objects
8
switchable electro-optic
4
electro-optic diffractive
4
diffractive lens
4
lens high
4
high efficiency
4
efficiency ophthalmic
4
ophthalmic applications
4
applications presbyopia
4
presbyopia age-related
4

Similar Publications

Point Cloud Wall Projection for Realistic Road Data Augmentation.

Sensors (Basel)

December 2024

Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea.

Several approaches have been developed to generate synthetic object points using real LiDAR point cloud data for advanced driver-assistance system (ADAS) applications. The synthetic object points generated from a scene (both the near and distant objects) are essential for several ADAS tasks. However, generating points from distant objects using sparse LiDAR data with precision is still a challenging task.

View Article and Find Full Text PDF

Cross-Field Road Markings Detection Based on Inverse Perspective Mapping.

Sensors (Basel)

December 2024

Department of Geomatics, National Cheng Kung University, No. 1, University Rd., Tainan 701, Taiwan.

With the rapid development of the autonomous vehicles industry, there has been a dramatic proliferation of research concerned with related works, where road markings detection is an important issue. When there is no public open data in a field, we must collect road markings data and label them by ourselves manually, which is huge labor work and takes lots of time. Moreover, object detection often encounters the problem of small object detection.

View Article and Find Full Text PDF

The accident mortality rates are rapidly increasing due to driver inattention, and traffic accidents become a significant problem on a global scale. For this reason, advanced driver assistance systems (ADASs) are essential to enhance traffic safety measures. However, adverse environmental factors, weather, and light radiation affect the sensors' accuracy.

View Article and Find Full Text PDF

In the maritime environment, the instance segmentation of small ships is crucial. Small ships are characterized by their limited appearance, smaller size, and ships in distant locations in marine scenes. However, existing instance segmentation algorithms do not detect and segment them, resulting in inaccurate ship segmentation.

View Article and Find Full Text PDF

This study investigates whether a diffractive presbyopia-correcting multifocal intraocular lens disrupts the favorable interaction between chromatic and monochromatic aberrations in the eye. This is analyzed not only for distant objects but also for closer viewing distances, where the lens utilizes different diffraction orders depending on its design. We consider diffractive designs based on the zero-diffraction order for far vision and the first diffraction order for near vision (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!