The response of renal inner medullary (IM) collecting duct cells (mIMCD3) to high NaCl involves increased expression of Gadd45 and p53, both of which have important effects on growth and survival of the cells. However, mIMCD3 cells, being immortalized by SV40, proliferate rapidly, which is known to sensitize cells to high NaCl, whereas IM cells in situ proliferate very slowly and survive much higher levels of NaCl. In the present studies, we have examined the importance of Gadd45 and p53 for survival of normal IM cells in their usual high-NaCl environment by using more slowly proliferating second-passage mouse inner medullary epithelial (p2mIME) cells and comparing cells from wild-type and gene knockout mice. Acutely elevating NaCl (and/or urea) reduces Gadd45a, but increases Gadd45b and Gadd45g mRNA, depending on the mix of NaCl and urea and the rate of increase of osmolality. Nevertheless, p2mIME cells from Gadd45b(-/-), Gadd45g(-/-), and Gadd45bg(-/-) mice survive elevation of NaCl (or urea) essentially the same as do wild-type cells. p53(-/-) Cells do not tolerate as high a concentration of NaCl (or urea) as p53(+/+) cells, but urinary concentrating ability of p53(-/-) mice is normal, as is the histology of inner medullas from p53(-/-) and Gadd45abg(-/-) mice. Thus although Gadd45 and p53 may play roles in osmotically stressed mIMCD3 cells, we do not find that their expression makes an important difference, either for Gadd45 in slower proliferating p2mIME cells or for Gadd45 or p53 in normal inner medullary epithelial cells in situ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.00518.2005 | DOI Listing |
Introduction: Milan hypertensive strain (MHS) of rat represents as one of the ideal rat models to study the genetic form of hypertension associated with aberrant renal salt reabsorption. In contrast to Milan normotensive strain (MNS), MHS rats possess missense mutations in three adducin genes and develop hypertension at 3 months old due to upregulation of sodium-chloride cotransporter (NCC). At pre-hypertensive stage (23-25 days old), MHS rats show enhanced protein abundance of Na+-K+-2Cl- cotransporter (NKCC2) but retain blood pressure comparable to MNS probably through enhanced GFR and reduced NCC and α-subunit of epithelial sodium channel (α-ENaC) expressed in distal convoluted tubule (DCT) and collecting duct (CD).
View Article and Find Full Text PDFMetabolites
November 2024
Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Diabetic kidney disease (DKD) is a major complication of diabetes leading to kidney failure. This study investigates lipid metabolism profiles of long-standing DKD (LDKD, diabetes duration > 10 years) by integrative analysis of available single-cell RNA sequencing and spatial multi-omics data (focusing on spatial continuity samples) from the Kidney Precision Medicine Project. Two injured cell types, an injured thick ascending limb (iTAL) and an injured proximal tubule (iPT), were identified and significantly elevated in LDKD samples.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2024
Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Am J Physiol Renal Physiol
January 2025
Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States.
Epidermal growth factor (EGF) has important effects in the renal collecting duct to regulate salt and water transport. To identify elements of EGF-mediated signaling in the rat renal inner medullary collecting duct (IMCD), we carried out phosphoproteomic analysis. Biochemically isolated rat IMCD suspensions were treated with 1 µM of EGF or vehicle for 30 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!