High-resolution structures of the Ca(2+)-ATPase have over the last 5 years added a structural dimension to our understanding of the function of this integral membrane protein. The Ca(2+)-ATPase is now by far the membrane protein where the most functionally different conformations have been described in precise structural detail. Here, we review our experience from solving Ca(2+)-ATPase structures: a purification scheme involving minimum handling of the protein to preserve natural and essential lipids, a rational approach to screening for crystals based on a limited number of polyethyleneglycols and many different salts, improving crystal quality using additives, collecting the data and finally solving the structures. We argue that certain of the lessons learned in the present study are very likely to be useful for crystallisation of eukaryotic membrane proteins in general.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2006.02.004DOI Listing

Publication Analysis

Top Keywords

membrane protein
8
crystals sarcoplasmic
4
sarcoplasmic reticulum
4
ca2+-atpase
4
reticulum ca2+-atpase
4
ca2+-atpase high-resolution
4
high-resolution structures
4
structures ca2+-atpase
4
ca2+-atpase years
4
years structural
4

Similar Publications

IFN-β production induced by PRRSV is affected by GP3 quantity control and CLND4 interaction.

Vet Res

January 2025

Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most harmful pathogens in the swine industry. Our previous studies demonstrated that the small extracellular domain (ECL2) of CLDN4 effectively blocks PRRSV infection. In this study, we explored the in vivo administration of swine ECL2 (sECL2) and found that it blocked HP-PRRSV infection and alleviated histopathological changes in organs.

View Article and Find Full Text PDF

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Sodium glucose co-transporter 2 (SGLT2) inhibitors versus dipeptidyl peptidase-4 (DPP-4) inhibitors and the risk of Atrial Fibrillation in patients with type 2 diabetes mellitus: a meta-analysis.

BMC Cardiovasc Disord

January 2025

The second Affiliated Hospital of Xi'an Jiaotong University, Xinjiang Hospital (People's Hospital of Xinjiang Uygur Autonomous Region, Bainiaohu Hospital), Urumqi, Xinjiang, 830026, People's Republic of China.

Background: Several studies showed higher risks of cardiovascular complications to have been observed in patients with type 2 diabetes mellitus (T2DM). Atrial fibrillation (AF) and atrial flutter have been more pronounced in patients with hyperglycemia. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are now considered as second-line treatment for patients with T2DM following inadequate glycemic control with first line agents.

View Article and Find Full Text PDF

Infectious diseases pose significant challenges to Norwegian Atlantic salmon aquaculture. Vaccines are critical for disease prevention; however, a deeper understanding of the immune system is essential to improve vaccine efficacy. Immunoglobulin M (IgM) is the main antibody involved in the systemic immune response of teleosts, including Atlantic salmon.

View Article and Find Full Text PDF

Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription.

Funct Integr Genomics

January 2025

Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.

Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!