This work presents a method that allows for the assessment of 3D murine myocardial motion in vivo at microscopic resolution. Phase-contrast (PC) magnetic resonance imaging (MRI) at 17.6 T was applied to map myocardial motion in healthy mice along three gradient directions. High-resolution velocity maps were acquired at three different levels in the murine myocardium with an in-plane resolution of 98 mum, a slice thickness of 0.6 mm, and a temporal resolution of 6 ms. The applied PC-MRI method was validated with phantom experiments that confirmed the correctness of the method with deviations of <1.7%. Myocardial in-plane velocities between 0.5 cm/s and 2.2 cm/s were determined for the healthy murine myocardium. Through-plane velocities of 0.1-0.83 cm/s were measured. Velocity data was also used to calculate the myocardial twist angle during systole at different slices in the short-axis view.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.20866DOI Listing

Publication Analysis

Top Keywords

murine myocardium
8
myocardial motion
8
vivo quantitative
4
quantitative three-dimensional
4
three-dimensional motion
4
motion mapping
4
mapping murine
4
myocardium pc-mri
4
pc-mri 176
4
176 work
4

Similar Publications

The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.

View Article and Find Full Text PDF

Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.

View Article and Find Full Text PDF

Adult human hearts exhibit limited regenerative capacity. Post-injury cardiomyocyte (CM) loss can lead to myocardial dysfunction and failure. Although neonatal mammalian hearts can regenerate, the underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

Injured Myocardium-Targeted Theranostic Nanoplatform for Multi-Dimensional Immune-Inflammation Regulation in Acute Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.

Pyroptosis is a key mode of programmed cell death during the early stages following acute myocardial infarction (AMI), driving immune-inflammatory responses. Cardiac resident macrophages (CRMs) are the primary mediators of cardiac immunity, and they serve a dual role through their shaping of both myocardial injury and post-AMI myocardial repair. To appropriately regulate AMI-associated inflammation, HM4oRL is herein designed, an innovative bifunctional therapeutic nanoplatform capable of inhibiting cardiomyocyte pyroptosis while reprogramming inflammatory signaling.

View Article and Find Full Text PDF

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!