Objective: Nocturnal rodents are frequently used as models in human breast cancer research, but these species have very different visual and circadian systems and, therefore, very different responses to optical radiation or, informally, light. Because of the impact of light on the circadian system and because recent evidence suggests that cancer risk might be related to circadian disruption, it is becoming increasingly clear that optical radiation must be properly characterized for both nocturnal rodents and diurnal humans to make significant progress in unraveling links between circadian disruption and breast cancer. In this paper, we propose a quantitative framework for comparing radiometric and photometric quantities in human and rodent studies.
Methods: We reviewed published research on light as a circadian stimulus for humans and rodents. Both suppression of nocturnal melatonin and phase shifting were examined as outcome measures for the circadian system.
Results: The data were used to develop quantitative comparisons regarding the absolute and spectral sensitivity for the circadian systems of humans and nocturnal rodents.
Conclusions: Two models of circadian phototransduction, for mouse and humans, have been published providing spectral sensitivities for these two species. Despite some methodological variations among the studies reviewed, the circadian systems of nocturnal rodents are approximately 10,000 times more sensitive to optical radiation than that of humans. Circadian effectiveness of different sources for both humans and nocturnal rodents are offered together with a scale relating their absolute sensitivities. Instruments calibrated in terms of conventional photometric units (e.g., lux) will not accurately characterize the circadian stimulus for either humans or rodents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10552-005-0574-1 | DOI Listing |
Sci Rep
January 2025
Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-city, 565-0871, Osaka, Japan.
Nocturnal polyuria is a major cause of nocturia, which affects quality of life. Aging-related decreases in nitric oxide production have been reported to contribute to salt-induced nocturnal polyuria. We posited that enhanced nitric oxide production from exercise could mitigate salt-induced nocturnal polyuria.
View Article and Find Full Text PDFPhysiol Behav
January 2025
Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa; Mammal Research Institute, University of Pretoria, Hatfield, 0083, South Africa. Electronic address:
The genus Otomys exhibits diverse activity patterns in the field, making them ideal subjects for studying circadian biology. The Southern African vlei rat (Otomys auratus) has previously been categorised as diurnal or crepuscular, but also displays some nocturnal activity. This study aimed to confirm the temporal niche of vlei rats in a laboratory setting and examine changes in activity when provided with a running wheel.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
Diurnal and nocturnal mammals have evolved unique behavioral and physiological adaptations to optimize survival for their day- or night-active lifestyle. The mechanisms underlying the opposite activity patterns are not fully understood but likely involve the interplay between the circadian time-keeping system and various arousal- or sleep-promoting factors, e.g.
View Article and Find Full Text PDFJ Pineal Res
January 2025
Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China.
Circadian rhythm disruption (CRD), stemming from sleep disorders and/or shift work, is a risk factor for reproductive dysfunction. CRD has been reported to disturb nocturnal melatonin signaling, which plays a crucial role in female reproduction as a circadian regulator and an antioxidant. The hypothalamic-pituitary-ovarian (HPO) axis regulates female reproduction, with luteinizing hormone (LH) pulse pattern playing a pivotal role in folliculogenesis and steroidogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!