The parathormone (PTH) production is controlled by calcium and vitamin D, which interact with the calcium-sensing receptor (CaSR) and vitamin D receptor (VDR), respectively. All of these elements control calcium homeostasis, which is crucial for many physiological processes. Thus, impairment of the upstream component of this system, e.g. a decrease of CaSR and/or VDR, could result in hyperparathyroidism (HPTH). Therefore, the aim of this study was to assess the expression of CaSR and VDR in a tertiary form of HPTH (T-HPTH). The study involved 19 T-HPTH patients qualified for parathyroidectomy and 21 control parathyroids harvested from multi-organ cadaver donors. The small fragments of harvested glands were homogenized and used for Western blot analysis, whereas the remaining tissues underwent routine hematoxylin-eosin staining or immunostaining for CaSR and VDR. Among 64 T-HPTH parathyroids, 58 revealed the morphology of benign hyperplasia, 2 were identified as adenoma and 4 were classified as normal; some glands displayed a mixed histological phenotype. Western blot analysis revealed a decrease of CaSR and VDR in hyperplasia and adenoma-derived samples. However, no correlation between the types of hyperplasia and receptor expression was observed. On the other hand, microscopic analysis of CaSR- and VDR-immunostained sections revealed a highly differentiated and significantly decreased mean expression of both receptors, which correlated with parathyroid histology. The reason behind the impaired expression of CaSR and VDR in T-HPTH is unclear. It presumably results from constant parathyroid stimulation at the stage of S-HPTH, followed by further development of polyclonal autonomy. However, the verification of this thesis requires further study.

Download full-text PDF

Source

Publication Analysis

Top Keywords

casr vdr
16
calcium-sensing receptor
8
vitamin receptor
8
receptor expression
8
decrease casr
8
expression casr
8
western blot
8
blot analysis
8
vdr t-hpth
8
casr
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!