Thromboxane A2 receptor (TP) consists of two alternatively spliced isoforms, TPalpha and TPbeta, which differ in their cytoplasmic tails. In the present study, we examined the difference in signal transduction of TPalpha and TPbeta, using stably expressing cells of TPalpha and TPbeta. The cells expressing TPalpha (TPalpha-SC2) and TPbeta (TPbeta-SC15) were selected based on the similar binding sites of [3H]-SQ29548, a TP antagonist. U46619, a TP agonist, elicited phosphoinositide hydrolysis in TPalpha-SC2 and TPbeta-SC15 cells with a similar concentration-dependency. U46619 also caused the phosphorylation of extracellular signal-regulated kinase (ERK1/2) in both TPalpha-SC2 and TPbeta-SC15 cells. While the peak of the phosphorylation of ERK1/2 was observed 5 min after addition of U46619 in TPalpha-SC2 cells, the long lasting phosphorylation up to 60 min was in TPbeta-SC15 cells. U46619-induced phosphorylation of ERK1/2 at 5 min was inhibited by pertussis toxin in both cells, suggesting that G(i) is involved in the phosphorylation mediated via both TP isoforms. Interfering G(12/13) activity by overexpression of p115-RGS reduced U46619-induced ERK1/2 phosphorylation in TPbeta-SC15 cells, but not in TPalpha-SC2 cells. H89, an inhibitor of protein kinase A (PKA), reduced U46619-induced ERK1/2 phosphorylation in TPalpha-SC2 cells, but not in TPbeta-SC15 cells. These results indicate that G(i) may be involved in TP-mediated ERK1/2 phosphorylation in both isoforms. In addition, H89-sensitive kinase and G(12/13) may be involved in TP-mediated ERK1/2 phosphorylation in TPalpha and TPbeta, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.29.719 | DOI Listing |
Biol Pharm Bull
April 2006
Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan.
Thromboxane A2 receptor (TP) consists of two alternatively spliced isoforms, TPalpha and TPbeta, which differ in their cytoplasmic tails. In the present study, we examined the difference in signal transduction of TPalpha and TPbeta, using stably expressing cells of TPalpha and TPbeta. The cells expressing TPalpha (TPalpha-SC2) and TPbeta (TPbeta-SC15) were selected based on the similar binding sites of [3H]-SQ29548, a TP antagonist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!