Amelogenin is the major protein component of the forming enamel matrix. In situ hybridization revealed a periodicity for amelogenin mRNA hybridization signals ranging from low to high transcript abundance on serial sections of developing mouse teeth. This in vivo observation led us to examine the amelogenin promoter for the activity of transcription factor(s) that account for this expression aspect of the regulation for the amelogenin gene. We have previously shown that CCAAT/enhancer-binding protein alpha (C/EBPalpha) is a potent transactivator of the mouse X-chromosomal amelogenin gene acting at the C/EBPalpha cis-element located in the -70/+52 minimal promoter. The minimal promoter contains a reversed CCAAT box (-58/-54) that is four base pairs downstream from the C/EBPalpha binding site. Similar to the C/EBPalpha binding site, the integrity of the reversed CCAAT box is also required for maintaining the activity of the basal promoter. We therefore focused on transcription factors that interact with the reversed CCAAT box. Using electrophoretic mobility shift assays we demonstrated that NF-Y was directly bound to this reversed CCAAT site. Co-transfection of C/EBPalpha and NF-Y synergistically increased the promoter activity. In contrast, increased expression of NF-Y alone had only marginal effects on the promoter. A dominant-negative DNA binding-deficient NF-Y mutant (NF-YAm29) dramatically decreased the promoter activity both in the absence or presence of exogenous expression of C/EBPalpha. We identified protein-protein interactions between C/EBPalpha and NF-Y by a co-immunoprecipitation analysis. These results suggest that C/EBPalpha and NF-Y synergistically activate the mouse amelogenin gene and can contribute to its physiological regulation during amelogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M510514200 | DOI Listing |
J Pharm Biomed Anal
November 2024
Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, United Kingdom. Electronic address:
The biological sex estimation of human individuals can be achieved by extracting fragments of the amelogenin protein from small areas of tooth enamel. The amelogenin gene can be found on both sex chromosomes (X and Y) with chromosome-specific differences in its sequence, and consequently the sequences of the expressed protein in teeth. Virtually all current analytical techniques used to identify the occurrence of the male Y chromosome-specific proteoform employ proteoform-specific peptide analysis by LC-ESI MS/MS, which typically results in longer analytical times due to the LC separation step, despite recent efforts of shortening the LC step.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA. Electronic address:
In human, mutations in the gene encoding the enamel matrix protein ameloblastin (Ambn) have been identified in cases of amelogenesis imperfecta. In mouse models, perturbations in the Ambn gene have caused loss of enamel and dramatic disruptions in enamel-making ameloblast cell function. Critical roles for Ambn in ameloblast cell signaling and polarization as well as adhesion to the nascent enamel matrix have been supported.
View Article and Find Full Text PDFInt J Oral Sci
October 2024
Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland.
Neurite outgrowth inhibitor A (Nogo-A) is a major player in neural development and regeneration and the target of clinical trials aiming at promoting the regeneration of the central nervous system upon traumatic and ischemic injury. In this work, we investigated the functions of Nogo-A during tooth development to determine its role in dental physiology and pathology. Using immunohistochemistry and in situ hybridization techniques, we showed that Nogo-A is highly expressed in the developing mouse teeth and, most specifically, in the ameloblasts that are responsible for the formation of enamel.
View Article and Find Full Text PDFSci Rep
August 2024
Department of Orthodontics, Faculty of Medicine, Lithuanian University of Health Sciences, Eivenių 2, 50161, Kaunas, Lithuania.
Forensic Sci Int
October 2024
Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!