A look back at the early literature on reactive oxygen species (ROS) gives the impression that these small inorganic molecules had a singular defined role, that of host defence in mammalian systems. However, it is now known that their roles also include a major part in cell signalling, in a broad range of organisms from mammals to plants. Similarly, a look back at papers on the proteins now thought to be involved in the perception of hydrogen peroxide (H(2)O(2)) will show that they too had defined functions assigned to them, completely independent to H(2)O(2) signalling. These proteins have disparate roles, in ethylene perception or even major metabolic pathways such as glycolysis. However, the chemistry of H(2)O(2) sensing dictates that the proteins have a commonality, with active thiol groups being potential ROS targets. The challenge now is to determine the full range of proteins which may partake in the role of H(2)O(2) perception, and to determine the mechanisms by which the signal is transmitted to the next players in the signal transduction pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erj180 | DOI Listing |
ACS Nano
January 2025
WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia.
Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
U.S. Environmental Protection Agency, E205-02, Research Triangle Park, P.O. Box 12055, Durham, North Carolina 27711, United States.
The complex, varied composition (i.e., rubbers/elastomers, carbon black, fillers, additives, and embedded road materials) and wide density range of tire road wear particles (TRWPs) present challenges for their isolation and identification from environmental matrices.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.
View Article and Find Full Text PDFCell Res
January 2025
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
Hydrogen peroxide (HO) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense HO in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses HO to confer resistance to multiple diseases caused by fungi or bacteria.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Medicine, Jianghan University Wuhan 430056, China.
This study aims to investigate the mechanism of tanshinone Ⅱ_A(Tan Ⅱ_A) in protecting mice from diethylinitrosamine(DEN)/carbon tetrachloride(CCl_4)/ethanol(C_2H_5OH)-induced hepatocellular carcinoma(HCC) and HepG2 cells from hydrogen peroxide(H_2O_2)-induced oxidative damage via the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and nuclear factor E2-related factor 2(Nrf2)/heme oxygenase 1(HO-1) signaling pathways. Sixty male C57BL/6J mice were grouped as follows: control, model, low, medium, and high-dose(10, 20, 40 mg·kg~(-1), respectively) Tan Ⅱ_A, and colchicine(0.2 mg·kg~(-1)), with 10 mice in each group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!