Unlabelled: Conventional imaging techniques such as ultrasonography, CT, and MRI are able to detect gallbladder abnormalities but are not always able to differentiate a malignancy from other disease processes such as cholecystitis. The purpose of the present study was to evaluate the efficacy of dual-time-point (18)F-FDG PET for differentiating malignant from benign gallbladder disease.
Methods: The study evaluated 32 patients who were suspected of having gallbladder tumors. (18)F-FDG PET (whole body) was performed at 62 +/- 8 min (early) after (18)F-FDG injection and was repeated 146 +/- 14 min (delayed) after injection only in the abdominal region. We evaluated the (18)F-FDG uptake both visually and semiquantitatively. Semiquantitative analysis using the standardized uptake value (SUV) was performed for both early and delayed images (SUV(early) and SUV(delayed), respectively). The retention index (RI) was calculated according to the equation (SUV(delayed) - SUV(early)) x 100/SUV(early). The tumor-to-liver ratio was also calculated.
Results: The final diagnosis was gallbladder carcinoma in 23 patients and benign disease in 9 patients. For visual analysis of gallbladder carcinoma, delayed (18)F-FDG PET images improved the specificity of diagnosis in 2 patients. When an SUV(early) of 4.5, SUV(delayed) of 2.9, and RI of -8 were chosen as arbitrary cutoffs for differentiating between malignant and benign conditions, sensitivity increased from 82.6% to 95.7% and 100% for delayed imaging and combined early and delayed imaging (i.e., RI), respectively. With the same criteria, specificity decreased from 55.6% to 44.4% for delayed imaging and combined early and delayed imaging, respectively. The specificity of (18)F-FDG PET improved to 80% in the group with a normal level of C-reactive protein (CRP) and decreased to 0% in the group with an elevated CRP level. For gallbladder carcinoma, both SUV and tumor-to-liver ratios derived from delayed images were significantly higher than the ratios derived from early images (P < 0.0001).
Conclusion: Delayed (18)F-FDG PET is more helpful than early (18)F-FDG PET for evaluating malignant lesions because of increased lesion uptake and increased lesion-to-background contrast. However, the diagnostic performance of (18)F-FDG PET depends on CRP levels.
Download full-text PDF |
Source |
---|
Ann Hematol
January 2025
Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
In a previous preliminary study, radiomic features from the largest and the hottest lesion in baseline F-FDG PET/CT (bPET/CT) of classical Hodgkin's Lymphoma (cHL) predicted early response-to-treatment and prognosis. Aim of this large retrospectively-validated study is to evaluate the predictive role of two-lesions radiomics in comparison with other clinical and conventional PET/CT models. cHL patients with bPET/CT between 2010 and 2020 were retrospectively included and randomized into training-validation sets.
View Article and Find Full Text PDFStrahlenther Onkol
January 2025
Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
Purpose: Recent advancements in imaging, particularly 18F-fluorodeoxyglucose positron-emission tomography-computed tomography (FDG-PET/CT), have improved the detection of involved lymph nodes, thus influencing staging accuracy and potentially treatment outcomes. This study is a post hoc analysis of the GAZAI trial data to evaluate the impact of FDG-PET/CT versus computed tomography (CT) alone on radiation target volumes for involved-site radiotherapy (IS-RT) in early-stage follicular lymphoma (FL).
Methods: All patients in the GAZAI trial underwent pretherapeutic FDG-PET/CT examinations, which were subject to central quality control.
Mol Imaging Biol
January 2025
Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Purpose: Radionuclide-labeled fibroblast activation protein inhibitor (FAPI) is an emerging tumor tracer. We sought to assess the uptake and diagnostic performance of F-FAPI-42 PET/CT compared with simultaneous 2-deoxy-2[F]fluoro-D-glucose (F-FDG) PET/CT in primary and metastatic lesions in patients with malignant digestive system neoplasms and to determine the potential clinical benefit.
Procedures: Forty-two patients (men = 30, women = 12, mean age = 56.
JAMA Neurol
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota.
Importance: Although 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established cross-sectional biomarker of brain metabolism in dementia with Lewy bodies (DLB), the longitudinal change in FDG-PET has not been characterized.
Objective: To investigate longitudinal FDG-PET in prodromal DLB and DLB, including a subsample with autopsy data, and report estimated sample sizes for a hypothetical clinical trial in DLB.
Design, Setting, And Participants: Longitudinal case-control study with mean (SD) follow-up of 3.
Cancer Biother Radiopharm
January 2025
Advanced Innovative Partners, Inc. (AIP), Miami, Florida, USA.
Integrin antagonist complex (IAC), a novel αvβ3 integrin antagonist peptidomimetic, has emerged as a promising agent for molecular imaging of tumor angiogenesis. This study evaluates the biodistribution and clinical efficacy of [Ga]Ga-DOTAGA-IAC PET/CT in detecting radioiodine-refractory differentiated thyroid carcinoma (RAIR-DTC), comparing its diagnostic performance with [F]F-FDG PET/CT. In this prospective pilot study, RAIR-DTC patients underwent whole-body imaging with [F] F-FDG PET/CT, followed by [Ga]Ga-DOTAGA-IAC PET/CT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!