AI Article Synopsis

Article Abstract

Herein are reported the synthesis, structure, and electronic properties of a series of tertiary di- and polyarylureas possessing pyrene and nitrobenzene end groups separated by a variable number of internal phenylenediamine bridging groups. These molecules adopt folded "protophane" structures in which the adjacent arenes are loosely pi-stacked. The behavior of both the pyrene and nitrobenzene singlet states has been investigated by means of femtosecond broadband pump-probe spectroscopy, and the transients have been assigned on the basis of comparison to reference molecules. Femtosecond time resolution permits direct observation of the fast internal conversion process for both the pyrene and nitrobenzene upper singlet states, as well as the intersystem crossing of nitrobenzene. The ultrafast (ca. 100 fs) charge separation of the donor-acceptor urea having no bridging group is attributed to an internal conversion process. The slower charge separation and charge recombination of the donor-acceptor urea having a single bridging group occur via a bridge-mediated superexchange process. Addition of a second bridging unit results in a role reversal for the pyrene singlet state, which now serves as an excited-state acceptor with the bridging units serving as the electron donors. The change in the directionality of electron transfer upon addition of a second bridging phenylenediamine is a consequence of a decrease in the bridge oxidation potential as well as a decrease in the rate constant for single-step superexchange electron transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja058050xDOI Listing

Publication Analysis

Top Keywords

charge separation
12
pyrene nitrobenzene
12
singlet states
8
internal conversion
8
conversion process
8
donor-acceptor urea
8
bridging group
8
addition second
8
second bridging
8
electron transfer
8

Similar Publications

Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.

View Article and Find Full Text PDF

Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan.

Polymers (Basel)

January 2025

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.

The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.

View Article and Find Full Text PDF

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

Preparation of a Silicon/MXene Composite Electrode by a High-Pressure Forming Method and Its Application in Li-Ion Storage.

Molecules

January 2025

Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.

The main component of high-capacity silicon-based electrodes is silicon powder, which necessitates intricate processing to minimize volume growth and powder separation while guaranteeing the ideal Si content. This work uses the an situ high-pressure forming approach to create an MXene/-Si/MXene composite electrode, where MXene refers to TiCT, and -Si denotes two-phase mixed nano-Si particles. The sandwich shape promotes silicon's volume growth and stops active particles from spreading.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!