This study examined the effect of repetitive apnea on brain oxygen pressure in newborn piglets. Each animal was given 10 episodes of apnea, initiated by disconnecting them from the ventilator and completed by reconnecting them to the ventilation circuit. The apneic episodes were ended 30 sec after the heart rate reached the bradycardic threshold of 60 beats per min. The oxygen pressure in the microvasculature of the cortex was measured by oxygen-dependent quenching of the phosphorescence. In all experiments, the blood pressure, body temperature, and heart rate were continuously monitored. Arterial blood samples were taken throughout the experiment and the blood pH, PaO2 and PaCO2 were measured. During pre-apnea, cortical oxygen was 55.1 +/- 6.4 (SEM, n = 7) mm Hg and decreased during each apnea to 8.1 +/- 2.8 mm Hg. However, the values of cortical oxygen varied during recovery periods. Maximal oxygen levels during recovery from the first two apneic episodes were 76.8 +/- 12 mm Hg and 69.6 +/- 9 mm Hg, respectively, values higher than pre-apnea. Cortical oxygen pressure then progressively decreased following consequent apnea. In conclusion, the data show that repetitive apnea caused a progressive decrease in cortical oxygen levels in the brain of newborn piglets. This deficit in brain oxygenation can be at least partly responsible for the neurological side effects of repetitive apnea.

Download full-text PDF

Source
http://dx.doi.org/10.1007/0-387-26206-7_1DOI Listing

Publication Analysis

Top Keywords

repetitive apnea
16
cortical oxygen
16
newborn piglets
12
oxygen pressure
12
apneic episodes
8
heart rate
8
pre-apnea cortical
8
+/- values
8
oxygen levels
8
apnea
7

Similar Publications

Introduction Obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse resulting in episodes of apnea and hypopnea. Studies have shown worsened coronavirus disease 2019 (COVID-19) severity due to coexisting respiratory conditions and suggest increased severity of COVID-19 in patients with or at high risk of OSA. However, the extent of this correlation is unclear.

View Article and Find Full Text PDF

Context-aware analysis enhances autoscoring accuracy of home sleep apnea testing.

J Clin Sleep Med

January 2025

Natural Interaction Lab, Thom Building, Department of Engineering, University of Oxford, Oxford, United Kingdom.

Study Objectives: Home sleep apnea testing based on peripheral arterial tonometry (P-HSAT) is increasingly being deployed because of its ability to test for multiple nights. However, P-HSATs do not have access to modalities such as airflow and cortical arousals and instead rely on alternative sources of information to detect respiratory events. This results in an a-priori performance disadvantage.

View Article and Find Full Text PDF

Introduction: Moderate-to-severe obstructive sleep apnea (OSA) affects a large segment of the US population and is characterized by repetitive and reversible obstruction of the upper airway during sleep. Untreated OSA is associated with increased incidence of heart attack, stroke, and motor vehicle accidents due to sleepiness. Continuous positive airway pressure is often prescribed, but most patients with OSA are nonadherent.

View Article and Find Full Text PDF

Background And Objective: Obstructive sleep apnea (OSA) is a common condition, featured by repetitive upper airway collapse during sleep manifested with poor quality of life and co-morbidities. Although continuous positive airway pressure (CPAP) is the recommended therapy, lack of patient compliance and persistent symptoms often preclude its success. The present study evaluates the effect of acetazolamide in combination with CPAP, and compares this treatment strategy to single therapy using CPAP in moderate to severe OSA.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is a state of sleep disorder, characterized by repetitive episodes of apnea and chronic intermittent hypoxia. OSA has an extremely high prevalence worldwide and represents a serious challenge to public health, yet its severity is frequently underestimated. It is now well established that neurocognitive dysfunction, manifested as deficits in attention, memory, and executive functions, is a common complication observed in patients with OSA, whereas the specific pathogenesis remains poorly understood, despite the likelihood of involvement of inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!