Electron spin resonance of charge carriers in chlorophyll a/water micelles.

Proc Natl Acad Sci U S A

Chemistry Division, Argonne National Laboratory, Argonne, IL 60439.

Published: March 1988

Chlorophyll a/water micelles (P740) prepared in hydrocarbon media have been shown by small-angle neutron scattering to consist of hollow cylinders whose surface is formed of a monolayer of chlorophyll crosslinked by water. The micelles can be reversibly oxidized or reduced to generate highly mobile holes or electrons that undergo rapid, one-dimensional transport along the chains of chlorophyll macrocycles comprising the surface of the micelles. Large pi-pi overlap within the chains facilitates the one-dimensional charge transport and is expected to do the same for energy transport. Structural defects in the micelle surface act as boundaries for charge transport, confining the spins to one-dimensional domains of approximately 200 macrocycles. The one-dimensional transport within the limited domains results in motionally narrowed electron spin resonance lines with some residual inhomogeneous broadening. Although the chlorophyll a incorporated in micelles is more easily oxidized than is monomeric chlorophyll a, it is much more resistant to chemical alteration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC279799PMC
http://dx.doi.org/10.1073/pnas.85.5.1498DOI Listing

Publication Analysis

Top Keywords

electron spin
8
spin resonance
8
chlorophyll a/water
8
a/water micelles
8
one-dimensional transport
8
charge transport
8
chlorophyll
6
micelles
5
transport
5
resonance charge
4

Similar Publications

Core-Excited States for Open-Shell Systems in Similarity-Transformed Equation-of-Motion Theory.

J Chem Theory Comput

January 2025

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.

X-ray absorption spectroscopy (XAS) is a powerful method for exploring molecular electronic structure by exciting core electrons into higher unoccupied molecular orbitals. In this study, we present the first integration of the spin-unrestricted similarity-transformed equation-of-motion coupled cluster method (CVS-USTEOM-CCSD) for core-excited and core-ionized states into the ORCA quantum chemistry package. Using the core-valence separation (CVS) approach, we evaluate the accuracy of CVS-USTEOM-CCSD across 13 open-shell organic systems, covering over 20 core excitations with diverse spin multiplicities (doublet, triplet, and quartet).

View Article and Find Full Text PDF

Switchable order parameters in ferroic materials are essential for functional electronic devices, yet disruptions of the ordering can take the form of planar boundaries or defects that exhibit distinct properties from the bulk, such as electrical (polar) or magnetic (spin) response. Characterizing the structure of these boundaries is challenging due to their confined size and three-dimensional (3D) nature. Here, a chemical antiphase boundary in the highly ordered double perovskite PbMgWO is investigated using multislice electron ptychography.

View Article and Find Full Text PDF

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore-radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet-radical pairs that can result in the formation of quartet states by spin mixing.

View Article and Find Full Text PDF

Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!