A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of an essential upstream element in the nopaline synthase promoter by stable and transient assays. | LitMetric

Identification of an essential upstream element in the nopaline synthase promoter by stable and transient assays.

Proc Natl Acad Sci U S A

Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340.

Published: August 1987

We studied the fine structure of the nopaline synthase (nos) promoter, which is active constitutively in a wide range of plant tissues, by both transient and stable transformation expression analyses. 3' and 5' deletion fragments were linked to form a set of internal deletion and duplication mutants that scanned the nos promoter. These mutated promoters were linked to the gene for the marker chloramphenicol acetyltransferase (CATase) as a means to readily assay promoter strength. The stable transformation analysis revealed the functional importance of an extended CCAAT box region (-97 to -63). Deletion of an upstream region (-112 to -101) containing an octameric repeated element resulted in a reduction in promoter strength by a factor of 30. A further deletion (-119 to -101) disrupted a potential Z-DNA-forming element as well, totally eliminating promoter function. Thus, a 19-base deletion across a repeated octamer and a potential Z-DNA-forming element identifies an essential upstream activator in the nos promoter. Duplication of the upstream element tripled promoter activity. Electroporation-mediated transient analysis was unable to distinguish downstream promoter elements. However, the upstream element behaved similarly in both assays in that deletion of the entire upstream element resulted in no promoter activity and that duplication of the element significantly enhanced the promoter strength.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC298939PMC
http://dx.doi.org/10.1073/pnas.84.16.5745DOI Listing

Publication Analysis

Top Keywords

upstream element
16
promoter strength
12
promoter
11
essential upstream
8
element
8
nopaline synthase
8
synthase promoter
8
stable transformation
8
potential z-dna-forming
8
z-dna-forming element
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!