There is increasing evidence that resting pulmonary vascular tone is mediated in part by the release of endothelium-derived relaxing factors (EDRF). Because L-arginine may be a precursor for EDRF synthesis, we studied the pulmonary vasodilating effects of L-arginine at rest and during pulmonary hypertension in 16 intact newborn lambs. At rest, the intravenous infusions of L-arginine (150 mg/kg) had no hemodynamic effects. However, during pulmonary hypertension induced by hypoxia or the infusion of U-46619 (a thromboxane A2 mimic), L-arginine decreased pulmonary arterial pressure by 22 and 27%, respectively (P less than 0.05). The decrease in pulmonary arterial pressure produced by L-arginine was blocked by methylene blue, a guanylate cyclase inhibitor, and augmented by Zapranast, a guanosine 3',5'-cyclic monophosphate (cGMP) phosphodiesterase inhibitor (-17.9 vs. -31.2%, P less than 0.05). In addition, L-arginine partially reversed the pulmonary hypertension induced by N omega-nitro-L-arginine, a competitive EDRF synthesis inhibitor, but D-arginine had no hemodynamic effects. This study suggests that L-arginine produces pulmonary vasodilation by increasing cGMP concentrations, supporting the in vitro hypothesis that L-arginine is a precursor for EDRF synthesis, whose availability may become rate limiting during pulmonary hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.1991.261.5.H1563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!