Introduction: Cerebral metabolism in chronic renal failure (CRF) patients has not been fully evaluated. This study examined cerebral metabolites in CRF, using proton magnetic resonance spectroscopy (MRS).
Methods: Subjects comprised 19 CRF patients and 21 healthy volunteers. Spectra were acquired from voxels of interest positioned in the parietal gray and white matter, and concentrations of the following cerebral metabolites were measured: N-acetyl group (NA), creatine + phosphocreatine (Cr), choline-containing compounds (Cho), myo-inositol and glutamate + glutamine. Among the 19 CRF patients, 9 who were started on hemodialysis (HD) underwent careful follow-up. Proton MRS was performed before and about 2 weeks after starting HD. In six patients in whom follow-up was possible, a third MRS was performed after about 18 months.
Results: The NA/Cr ratio was not significantly changed in CRF. However, elevations in the Cho/Cr ratio were found in both gray and white matter compared with controls. To the best of our knowledge, this is the first report of positive correlations between the Cho/Cr ratio in both regions and serum osmotic pressure. Compared with baseline data, no significant changes in cerebral metabolite ratios were found about 2 weeks after starting HD. About 18 months after starting HD, however, the elevated Cho/Cr ratio was significantly reduced in the gray matter and tended to be reduced in the white matter.
Conclusions: Cho appear to play an important role in the regulation of cerebral metabolism to compensate for alterations in serum osmotic pressure in CRF, and HD may correct this abnormal cerebral metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00234-006-0063-6 | DOI Listing |
Methamphetamine (METH) is a highly addictive and dangerous drug that mainly affects neurotransmitters in the brain and leads to feelings of alertness and euphoria. The METH use can lead to addiction, which has become a worldwide problem, resulting in a slew of public health and safety issues. Recent studies showed that chronic METH use can lead to neurotoxicity, neuro-inflammation and oxidative stress which can lead to neuronal injury.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Research Center of Neurology, Moscow, Russia.
At the present stage, great progress has been achieved in understanding the mechanisms of the development of cerebral ischemia. This became possible due to the achievements of theoretical disciplines, in connection with which the general biological approach was formed in the study of pathogenesis of acute and chronic cerebrovascular disorders (CVD). The discovery of pathways of free radical oxidation in cerebral ischemia made it possible to substantiate and develop therapeutic strategies using drugs with antioxidant and neuroprotective activity.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia.
Objective: To compare biomarkers of neurovascular unit (NVU) - S100β, NSE, BDNF and indicators of the brain electrical activity in patients who underwent coronary artery bypass grafting (CABG) depending on the use of different versions of multi-tasking cognitive training (CT).
Material And Methods: The study included 89 people, of whom 47 completed the CTI (postural and three cognitive tasks (counting backwards, verbal fluency and the open-ended task «Unusual use of an ordinary object») and 42 patients, who underwent CTII (visuomotor reaction and the same cognitive tasks) in the early postoperative CABG period. The patients of both groups underwent complex testing of psychomotor, executive functions, attention, short-term memory and EEG study in the perioperative period of CABG.
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
Research Center of Neurology, Moscow, Russia.
Objective: To evaluate the relationship of diet and food components with the frequency of migraine attacks.
Material And Methods: Sixty patients (mean age 35.5±8.
Neuro Oncol
December 2024
Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.
Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!