Forestland application of poultry manure offers an alternative to the conventional practice of pastureland application. Before such a practice is considered viable, however, it must be demonstrated that the forest ecosystem is capable of absorbing the nutrients contained in poultry manure, especially nitrogen (N) and phosphorus (P). From the forestry perspective, it must also be demonstrated that tree growth is not diminished. We investigated these questions using loblolly pine (Pinus taeda L.) stands growing in central Mississippi in an area of high poultry production. Stockpiled broiler litter was applied to newly thinned, 8-yr-old stands at 0, 4.6, and 18.6 dry Mg ha-1, supplying 0, 200, and 800 kg N ha-1 and 0, 92, and 370 kg P ha-1, respectively. Levels of nitrate in soil water, monitored at a 50-cm depth with porous cup tension lysimeters, exceeded 10 mg N L-1 during the first two years after application in the 18.6 Mg ha-1 rate but only on two occasions in the first year for the lower rate of application. Phosphate was largely absent from lysimeter water in all treatments. Other macronutrients (K, Ca, Mg, S) were elevated in lysimeter water in proportion to litter application rates. Soil extractable nitrate showed similar trends to lysimeter water, with substantial elevation during the first year following application for the 18.6 Mg ha-1 rate. Mehlich III-extractable phosphate peaked in excess of 100 microg P g-1 soil during the third year of the study for the 18.6 Mg ha-1 rate. The 4.6 Mg ha-1 rate did not affect extractable soil P. Tree growth was increased by the poultry litter. Total stem cross-sectional area, or basal area, was approximately 20% greater after 2 yr for both rates of litter application. Overall, the nutrients supplied by the 4.6 Mg ha-1 rate were contained by the pine forest and resulted in favorable increases in tree growth. The higher rate, by contrast, did pose some risk to water quality through the mobilization of nitrate. These results show that, under the conditions of this study, application of poultry litter at moderate rates of approximately 5 Mg ha-1 to young stands of loblolly pine offers an alternative disposal option with minimal impacts to water quality and potential increases in tree growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2005.0244 | DOI Listing |
Front Plant Sci
December 2024
National Sugar Crops Improvement Center, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin, China.
The northeastern part of China is a traditional sugar beet cultivation area where the soils are classified generally as the black and albic soil types with low boron (B) availability. Boron fertilizer can increase soil B content and significantly improve crop yield and quality. At present, the effects of slow-release B fertilizer on beet root yield and quality remain unclear.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
Lycium barbarum is an important economic crop in the arid region of Northwest China, and the regulation of irrigation and fertilisation is an important way to improve the quality and yield of Lycium barbarum. To explore the effects of water-fertiliser coupling on photosynthesis, quality and yield of Lycium barbarum under irrigation methods based on predicted crop evapotranspiration (ET), ET was calculated via reference evapotranspiration (ET) predicted on the basis of public weather forecasts, and the irrigation water volume was determined as a proportion of this ET. A field experiment was conducted via a completely randomised experimental design with five irrigation water volumes (W0 (100% ET), W1 (90% ET), W2 (80% ET), W3 (70% ET) and W4 (65% ET)) and three fertiliser application rates (high fertiliser (FH), medium fertiliser (FM) and low fertiliser (FL)).
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
College of Resources and Environment | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs | Microelement Research Center, Huazhong Agricultural University, Wuhan, China.
Background: There is limited information on the effect of potassium (K) on the taste quality of rice. Field experiments with five K fertilizer application rates (0, 60, 120, 180, and 240 kg KO ha) were conducted in 2019 and 2020 using two cultivars (Xiadao No. 1 and Shenliangyou 5814) to study the effects of K fertilization on grain yield, taste quality, starch components, and protein components in grains.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Faculty of Engineering and Natural Sciences, Sabanci University Orta, Istanbul, ;Türkiye.
Inherently low concentrations of zinc (Zn), iron (Fe), iodine (I), and selenium (Se) in wheat ( L.) grains represent a major cause of micronutrient malnutrition (hidden hunger) in human populations. Genetic biofortification represents a highly useful solution to this problem.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Agro-socio-ecological systems are a crucial link connecting urbanization, agricultural development and environmental evolution. However, there is no effective research on realizing regional collaborative development and environmental governance of the agricultural social-system collaborative governance model, especially spatial differentiation governance. In this study, the region with the most severe soil erosion in the world was selected as the research area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!