Cell adhesion mediated by the interaction between integrin alpha4beta1 and VCAM-1 is important in normal physiologic processes and in inflammatory and autoimmune disease. Numerous studies have mapped the alpha4beta1 binding sites in VCAM-1 that mediate cell adhesion; however, little is known about the regions in VCAM-1 important for regulating soluble binding. In the present study, we demonstrate that 6D VCAM-1 (an alternatively spliced isoform of VCAM-1 lacking Ig-like domain 4) binds alpha4beta1 with a higher relative affinity than does the full-length form of VCAM-1 containing 7 Ig-like extracellular domains (7D VCAM-1). In indirect binding assays, the EC50 of soluble 6D VCAM-1 binding to alpha4beta1 on Jurkat cells (in 1 mM MnCl2) was 2 x 10(-9) M, compared with 7D VCAM-1 at 11 x 10(-9) M. When used in solution to inhibit alpha4beta1 mediated cell adhesion, the IC50 of 6D VCAM-1 was 13 x 10(-9) M, compared with 7D VCAM-1 measured at 150 x 10(-9) M. Removal of Ig-like domains 4, 5, or 6, or simply substituting Asp328 in domain 4 of 7D VCAM-1 with alanine, caused increased binding of soluble 7D VCAM-1 to alpha4beta1. In contrast, cells adhered more avidly to 7D VCAM-1 under shear force, as it induced cell spreading at lower concentrations than did 6D VCAM-1. Finally, soluble 6D VCAM-1 acts as an agonist through alpha4beta1 by augmenting cell migration and inducing cell aggregation. These results indicate that the domain 4 of VCAM-1 plays a contrasting role when VCAM-1 is presented in solution or as a cell surface-expressed adhesive substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.176.8.5041 | DOI Listing |
Sci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFInflamm Res
January 2025
Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Rua Dr. Plácido da Costa, S/N, Edifício Poente, Piso 3, 4200-450, Porto, Portugal.
Background And Aims: Endocan has been scarcely explored in COVID-19, especially regarding its modulation by veno-venous extracorporeal membrane oxygenation (VV-ECMO), hypertension or previous renin-angiotensin-aldosterone system (RAAS) inhibitors treatment. We compared endocan and other endotheliitis markers in hospitalized COVID-19 patients and assessed their modulation by VV-ECMO, hypertension and previous RAAS inhibitors treatment.
Material And Methods: Serum endocan, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin were measured in "severe" (n = 27), "critically ill" (n = 17) and "critically ill on VV-ECMO" (n = 17) COVID-19 patients at admission, days 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Pharmaceutics
January 2025
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Collegium Medicum, University of Warmia and Mazury, Al. Wojska Polskiego 30, 10-229 Olsztyn, Poland.
Vascular cell adhesion molecule-1 (VCAM-1) and E-selectin are involved in different inflammatory diseases and may be potential cardiovascular risk biomarkers in psoriasis. They play an important role in regulating the recruitment and adhesion to endothelial cells during inflammation, affecting various conditions like vasculitis, atherosclerosis, and cardiovascular diseases. Positive outcomes have been observed when using Tumor Necrosis Factor Alpha (TNF-α) inhibitors and biological therapies that target selectins to control the functioning of endothelial cells and reduce inflammation in psoriasis and related conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!