The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458684PMC
http://dx.doi.org/10.1073/pnas.0509860103DOI Listing

Publication Analysis

Top Keywords

bacterial adhesion
8
biofilm development
8
development host
8
host colonization
8
pantoea stewartii
8
cell density-dependent
8
governed esai/esar
8
mutant strains
8
defined biofilms
8
stewartii
5

Similar Publications

Bacterial infections have become a fatal issue for human health. The excessive use of antibiotics leads to bacterial resistance. It is of great importance to develop alternate antimicrobial nanomaterials for effective antibacterial therapy.

View Article and Find Full Text PDF

Polydimethylsiloxane loaded capsaicin afflicts membrane integrity, metabolic activity and biofilm formation of nosocomial pathogens.

Microb Pathog

January 2025

Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam 603 102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India. Electronic address:

Biofilms constitute 80% of all nosocomial infections associated with invasive medical devices. Polydimethylsiloxane, a highly elastic, inert, non-reactive, biocompatible silicone polymer is widely used as implant biomaterial due to its non-toxic and low-immunogenic nature. Owing to its hydrophobicity, PDMS suffers from microbial adhesion.

View Article and Find Full Text PDF

Isoferulic acid facilitates effective clearance of hypervirulent Klebsiella pneumoniae through targeting capsule.

PLoS Pathog

January 2025

Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.

Hypervirulent Klebsiella pneumoniae (hvKP) poses an alarming threat in clinical settings and global public health owing to its high pathogenicity, epidemic success and rapid development of drug resistance, especially the emergence of carbapenem-resistant lineages (CR-hvKP). With the decline of the "last resort" antibiotic class and the decreasing efficacy of first-line antibiotics, innovative alternative therapeutics are urgently needed. Capsule, an essential virulence determinant, is a major cause of the enhanced pathogenicity of hvKP and represents an attractive drug target to prevent the devastating clinical outcomes caused by hvKP infection.

View Article and Find Full Text PDF

Purpose: In this randomized clinical trial, we examined the incorporation of nanogold particles into polymethyl methacrylate denture bases and compared these modified bases with conventional ones in mandibular implant-retained overdentures, focusing on microbiological growth and adhesion characteristics.

Methods: In this study, twenty-two male patients who were completely edentulous participated in a rehabilitation program involving mandibular overdentures retained by two dental implants placed in the canine area. The subjects were categorized into two equal groups, each comprising eleven patients.

View Article and Find Full Text PDF

This study evaluates the antibacterial properties and physicochemical characteristics of -tantalum-copper (Ta-Cu) coatings deposited on titanium alloy substrates using high-power magnetron sputtering. Implant-associated infections, particularly those caused by bacterial adhesion and biofilm formation, pose significant challenges in the field of orthopedic and dental implants. To address these issues, Ta-Cu coatings with varying copper content (∼3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!