Gamma-secretase-dependent proteolysis of CD44 promotes neoplastic transformation of rat fibroblastic cells.

Cancer Res

Génétique moléculaire, Signalisation et Cancer, UMR 5201, Faculté de Médecine, 8 Avenue Rockefeller, 69-373 Lyon Cedex 08, France.

Published: April 2006

The metalloprotease-dependent extracellular domain cleavage of the adhesion molecule CD44 is frequently observed in human tumors and is thought to promote metastasis. This cleavage is followed by gamma-secretase-dependent release of CD44 intracellular domain (CD44-ICD), which exhibits nuclear signaling activity. Using a reversible Ret-dependent oncogenic conversion model and a restricted proteomic approach, we identified a positive correlation between the neoplastic transformation of Rat-1 cells and the expression of standard CD44. In these transformed cells, CD44 was found to undergo a sequential metalloprotease and gamma-secretase cleavage, resulting in an increase in expression of CD44-ICD. We showed that this proteolytic fragment possesses a transforming activity. In support of this role, a significant and specific reduction in Ret-induced transformation of Rat-1 cells was observed following drug-mediated inhibition of gamma-secretase. Taken together, these findings suggest that the shedding of CD44 may not only modulate metastasis but also affects earlier events in tumorigenesis through the release of CD44-ICD.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-3870DOI Listing

Publication Analysis

Top Keywords

neoplastic transformation
8
transformation rat-1
8
rat-1 cells
8
cd44
6
gamma-secretase-dependent proteolysis
4
proteolysis cd44
4
cd44 promotes
4
promotes neoplastic
4
transformation rat
4
rat fibroblastic
4

Similar Publications

The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers.

View Article and Find Full Text PDF

MicroRNA (miR)-126 is frequently downregulated in malignancies, including breast cancer (BC). Despite its tumor-suppressive role, the mechanisms underlying miR-126 deregulation in BC remain elusive. Through silencing experiments, we identified Early B Cell Factor 1 (EBF1), ETS Proto-Oncogene 2 (ETS2), and Krüppel-Like Factor 2 (KLF2) as pivotal regulators of miR-126 expression.

View Article and Find Full Text PDF

Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation.

View Article and Find Full Text PDF

The study aimed to investigate oral potentially malignant disorders (OPMDs) diagnosed in an Oral Pathology service in southern Brazil over a span of 56 years and to assess the factors influencing their severity and outcomes. A retrospective analysis of histopathological records from 1965 to 2021 was performed. Lesions diagnosed as leukoplakia, erythroplakia, leukoerythroplakia, or actinic cheilitis were included.

View Article and Find Full Text PDF

The cGAS-STING, p38 MAPK, and p53 pathways link genome instability to accelerated cellular senescence in ATM-deficient murine lung fibroblasts.

Proc Natl Acad Sci U S A

January 2025

Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!