Chemical enhancers of cytokine signaling that suppress microfilament turnover and tumor cell growth.

Cancer Res

Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue R988, Toronto, Ontario, Canada M5G 1X5.

Published: April 2006

The transforming growth factor-beta (TGF-beta) family of cytokines regulates cell proliferation, morphogenesis, and specialized cell functions in metazoans. Herein, we screened a compound library for modifiers of TGF-beta signaling in NMuMG epithelial cells using a cell-based assay to measure Smad2/3 nuclear translocation. We identified five enhancers of TGF-beta signaling that share a core structure of diethyl 2-(anilinomethylene)malonate (DAM), and D(50) values of 1 to 4 micromol/L. Taking advantage of the Mgat5 mutant phenotype of accelerated receptor loss to endocytosis, we determined that DAM-1976 restored the sensitivity of Mgat5(-/-) carcinoma cells to both TGF-beta and epidermal growth factor (EGF). In Mgat5 mutant and wild-type carcinoma cells, DAM-1976 enhanced and prolonged TGF-beta- and EGF-dependent Smad2/3 and Erk activation, respectively. DAM-1976 reduced ligand-dependent EGF receptor endocytosis, actin microfilament turnover, and cell spreading, suggesting that the compound attenuates vesicular trafficking. Hyperactivation of intracellular signaling has the potential to suppress tumor cell growth and, in this regard, DAM-1976 represents a new pharmacophore that increases basal activation of Smad2/3 and Erk, inhibits microfilament remodeling, and suppresses carcinoma cell growth.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-2542DOI Listing

Publication Analysis

Top Keywords

cell growth
12
microfilament turnover
8
tumor cell
8
tgf-beta signaling
8
mgat5 mutant
8
carcinoma cells
8
smad2/3 erk
8
cell
6
growth
5
chemical enhancers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!