Inhibition of cyclooxygenase-2 expression by zinc-chelator in retinal ischemia.

Vision Res

Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-ku, Seoul 137-701, Republic of Korea.

Published: September 2006

The zinc ion (Zn2+) is abundant in neurons. However, excessive Zn2+ can induce neuronal cell death. This study examined the role of Zn2+ in transient retinal ischemia in adult male rats. The rats were sacrificed 4-24 h after retinal ischemia by high intra-ocular pressure, and the retinas were prepared for microscopic examination of retinal cell degeneration, and fluorescence microscopy using zinquin ethyl ester as the zinc ion-specific probe. Moreover, COX-2 expression was observed by Western blotting. In control retinas, there was a low Zn2+ concentration in the inner plexiform layer (IPL), a high Zn2+ concentration in the outer plexiform layer (OPL), and no detectable Zn2+ in either the ganglion cell layer (GCL) or the inner nuclear layer (INL). In contrast, in the retinas exposed to ischemia without the administration of the zinc ion chelators (Ca2+-EDTA and TPEN), Zn2+ deposits were found in the IPL and INL beginning 4 h after ischemia and degeneration of neurons was found in the GCL and INL. Less Zn2+ accumulation in the IPL and INL and less neuronal degeneration in the GCL and INL were found in the retinas treated with Ca2+-EDTA or TPEN before ischemia. Furthermore, the COX-2 protein levels increased 4-8 h after retinal ischemia, and chelation of zinc ion inhibited this effect. These results suggest that the accumulation of Zn2+ following an ischemic insult can cause retinal degeneration and induce abnormal COX-2 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2006.02.014DOI Listing

Publication Analysis

Top Keywords

retinal ischemia
16
zinc ion
12
zn2+
9
cox-2 expression
8
zn2+ concentration
8
plexiform layer
8
ca2+-edta tpen
8
ipl inl
8
gcl inl
8
ischemia
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!