Background: West Nile virus (WNV) transmission by transfusion was documented in 2002. Approximately 80 percent of WNV infections are asymptomatic and 1 percent develop severe neurological illness. In animals, Langerhans-dendritic cells support initial viral replication, followed by replication in lymphoid tissues and dissemination to organs and possibly to the CNS. The cellular tropism of WNV infection after transfusion and the particular human blood cells that sustain viral replication remain largely unknown. Whether primary monocyte-derived macrophages (MDMs) support WNV infection-replication and produce infectious virions, with an in vitro system, was investigated.
Study Design And Methods: Elutriated monocytes (CD33+/CD14+) from suitable blood donors were cultured in the presence of macrophage-colony-stimulating factor, infected with WNV-NY99 at different time points, washed, and cultivated for up to 47 days. Supernatants were tested for WNV replication by TaqMan reverse transcription-polymerase chain reaction (RT-PCR), with primers for the envelope and/or 3'NC regions, and by cDNA-PCR to detect WNV minus-strand RNA and for the presence of functional virions by infectivity assays in Vero cells.
Results: RT-PCR TaqMan of supernatants demonstrated productive infection of MDMs. Viral load reached 2 to 5 log above baseline in 3 to 6 days and then declined, with detectable viral replication persisting for up to 47 days. WNV minus-strand RNA was detected in Day 4 cultures, indicating active viral replication. Infected MDM cultures showed no cytopathic changes. Supernatants that were TaqMan-positive for the presence of WNV-infected Vero cells and produced cytopathic effects within 3 to 5 days of culture.
Conclusion: The susceptibility of monocytes-macrophages to productive infection in vitro is compatible with a potential role in initial WNV replication and propagation after transmission by transfusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1537-2995.2006.00769.x | DOI Listing |
PLoS Pathog
January 2025
Graduate Program in Immunology, Ann Arbor, Michigan, United States of America.
Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45.
View Article and Find Full Text PDFPLoS Pathog
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
Foot-and-mouth disease virus (FMDV) are small, icosahedral viruses that cause serious clinical symptoms in livestock. The FMDV VP1 protein is a key structural component, facilitating virus entry. Here, we find that the E3 ligase RNF5 interacts with VP1 and targets it for degradation through ubiquitination at the lys200 of VP1, ultimately inhibiting virus replication.
View Article and Find Full Text PDFPLoS One
January 2025
SLAC National Accelerator Laboratory, Stanford University, Stanford, California, United States of America.
Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!