DNA micropatterning on polycrystalline diamond via one-step direct amination.

Langmuir

Nanotechnology Research Center & Institute of Biomedical Engineering, Waseda University, Waseda Tsurumaki-cho 513, Shinjuku-ku, Tokyo 162-0041, Japan.

Published: April 2006

We report a novel method of one-step direct amination on polycrystalline diamond to produce functionalized surfaces for DNA micropatterning by photolithography. Polycrystalline diamond was exposed to UV irradiation in ammonia gas to generate amine groups directly. After patterning, optical microscopy confirmed that micropatterns covered with an Au mask were regular in size and shape. The regions outside the micropatterns were passivated with fluorine termination by C3F8 plasma, and the chemical changes on the two different surfaces--the amine groups inside the patterned regions by one-step direct amination and fluorine termination outside the patterned regions--were characterized by spatially resolved X-ray photoelectron spectroscopy (XPS). The patterned areas terminated with active amine groups were then immobilized with probe DNA via a bifunctional molecule. The sequence specificity was conducted by hybridizing fluorescently labeled target DNA to both complementary and noncomplementary probe DNA attached inside the micropatterns. The fluorescence micropatterns observed by epifluorescence microscopy corresponded to those imaged by optical microscopy. DNA hybridization and denaturation experiments on a DNA-modified diamond show that the diamond surfaces reveal superior stability. The influence of a different amination time on fluorescence intensity was compared. Different terminations as passivated layers were investigated, and as a result, fluorine termination points to the greatest signal-to-noise ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la050883dDOI Listing

Publication Analysis

Top Keywords

polycrystalline diamond
12
one-step direct
12
direct amination
12
amine groups
12
fluorine termination
12
dna micropatterning
8
optical microscopy
8
probe dna
8
dna
6
diamond
5

Similar Publications

Diamond is an exceptional material with great potential across various fields owing to its interesting properties. However, despite extensive efforts over the past decades, producing large quantities of desired ultrathin diamond membranes for widespread use remains challenging. Here we demonstrate that edge-exposed exfoliation using sticky tape is a simple, scalable and reliable method for producing ultrathin and transferable polycrystalline diamond membranes.

View Article and Find Full Text PDF
Article Synopsis
  • * A 3D finite element model was created using ABAQUS software to simulate and compare the effectiveness of traditional rock breaking versus ultrasonic vibratory rock breaking.
  • * Findings reveal that ultrasonic vibration, especially at 40 kHz, can enhance rock damage and efficiency, with mechanical specific energy showing a significant minimum at frequencies between 20-25 kHz, ultimately reducing drilling costs.
View Article and Find Full Text PDF

Influence of the Cooling Method on Cutting Force and Recurrence Analysis in Polymer Composite Milling.

Materials (Basel)

December 2024

Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, 36 Nadbystrzycka, 20-618 Lublin, Poland.

This work investigates the milling of the surface of glass and carbon fiber-reinforced plastics using tools with a polycrystalline diamond insert. The milling process was conducted under three different conditions, namely without the use of a cooling liquid, with oil mist cooling, and with emulsion cooling. The milling process of composites was conducted with variable technological parameters.

View Article and Find Full Text PDF
Article Synopsis
  • - The compound polycrystalline [FeL2][BF4]2 demonstrates a significant hysteretic spin transition around 240 K, with its behavior influenced by sample history, consisting of two related high-spin polymorphs (HS1 and HS2).
  • - Upon cooling, both high-spin forms transition to low-spin phases (LS3 and LS4) at approximately 230 K, with LS3 coming from HS1 and LS4 from HS2, showing different crystal structures and transition temperatures.
  • - Repeated cycling through the spin transition results in a gradual increase of HS1 and LS3 phases while depleting HS2 and LS4, indicating complex phase behavior and sample-dependent characteristics across related iron(II) and
View Article and Find Full Text PDF

Investigation on the Machinability of Polycrystalline ZnS by Micro-Laser-Assisted Diamond Cutting.

Micromachines (Basel)

October 2024

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Polycrystalline ZnS is a key infrared optical material known for its excellent optical properties but is challenging to machine due to its soft and brittle nature.
  • Recent advancements in in situ laser-assisted diamond cutting have shown to enhance the ultra-precision machining of ZnS by improving its ductile characteristics and reducing microhardness.
  • Experimental results demonstrate that this method significantly improves cutting quality, achieving a 73.58% better surface finish and changing the damage patterns during machining, thus providing a valuable approach for high-performance optical systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!