A hydrotalcite-like film has been successfully deposited on an Al-bearing glass substrate based on an interface reaction between an Al layer and a zinc aqueous solution. The film selectively grew on the Al surface but not on the glass surface. The film on Al was composed of layered nanosheets of a hydrotalcite-like compound containing Al and Zn. Comparably, deposits on the plastic surface and precipitates in solution were wurzite-type ZnO with various morphologies depending upon the preparation conditions. At low supersaturation degrees, single crystals and superstructures of Zn-Al hydrotalcite were also obtained. This porous hydrotalcite film has a potential application as catalyst supports, environmental materials, or matrixes for hydrotalcite-based nanocomposite films. Using Al as a reaction interface makes it easy to coat porous hydrotalcites on a series of matrix materials varying in shapes and properties, which is important for achieving practical applications. In addition, the method developed should be widely applicable to other systems for the preparation of porous or oriented hydrotalcite-like thin films by an appropriate combination of divalent/trivalent solution-substrate systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la052424iDOI Listing

Publication Analysis

Top Keywords

hydrotalcite-like film
8
zinc aqueous
8
aqueous solution
8
film
5
surface
4
surface precipitation
4
precipitation highly
4
porous
4
highly porous
4
hydrotalcite-like
4

Similar Publications

Hydrotalcite exhibits the capability to adsorb CO at elevated temperatures. High surface area and favorable coating properties are essential to harness its potential for practical applications. Stable alcohol-based dispersions are needed for thin film applications of mixed membranes containing hydrotalcite.

View Article and Find Full Text PDF

Synthesis and Characterization of New Layered Double Hydroxide-Polyolefin Film Nanocomposites with Special Optical Properties.

Materials (Basel)

October 2019

Departamento de Ingeniería Mecánica, Materiales y Fabricación. Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.

In this study, we have synthesized new double layered hydroxides to be incorporated to low density polyethylene thermoplastic matrix. These new composites present promising applications as materials to build greenhouses due to the enhancement of their optical properties. A characterization of the modified nanoclay has been performed by means of X-ray fluorescence (XRF), X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

Biosens Bioelectron

March 2011

Dipartimento di Chimica Fisica ed Inorganica, Bologna, INSTM, UdR Bologna, Italy.

In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV).

View Article and Find Full Text PDF

In this work, monodispersed layered double hydroxide (Ca-Al LDHs) nanoparticles were synthesized by hydrothermal coprecipitation. Uniform thin films of layered double hydroxide on porous anodic aluminum oxide (AAO) substrates were formed by a direct precipitation process in a homogeneous suspension containing monodispersed Ca-Al layered double hydroxide nanoparticles. It was found that the formation of a designed hydrotalcite-like phase is strongly dependent on the [Ca(2+)]/[Al(3+)] ratios, and that a minor CaCO3 phase could possibly form simultaneously, which is attributed to the greater insolubility of CaCO3 and the incompatibility of the ionic size of Al and Ca.

View Article and Find Full Text PDF

A hydrotalcite-like film has been successfully deposited on an Al-bearing glass substrate based on an interface reaction between an Al layer and a zinc aqueous solution. The film selectively grew on the Al surface but not on the glass surface. The film on Al was composed of layered nanosheets of a hydrotalcite-like compound containing Al and Zn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!