The effect of hepatic impairment on the pharmacokinetics of escitalopram was determined by means of nonlinear mixed effect modeling, considering both the Child-Pugh classification (and its components) and cytochrome P450 2C19 (CYP2C19) activity. Twenty-four subjects were grouped according to their Child-Pugh score as healthy, with mild hepatic impairment or with moderate hepatic impairment. The subjects were administered a single oral dose of escitalopram 20 mg, and blood was sampled up to 168 hours after dosage. The serum concentration of escitalopram was determined and the pharmacokinetics assessed by nonlinear mixed effect modeling. The CYP2C19 activity was measured from the urinary excretion ratio of S/R-mephenytoin. All subjects tolerated the treatment well, and no serious adverse events were reported. Predicted mean area under the curve from zero to infinity (AUC(inf)) values were 51% and 69% higher for patients with mild and moderate hepatic impairment (Child-Pugh classification), respectively, compared with healthy subjects. The best-fitting model showed an influence of CYP2C19 activity on clearance and body weight on the volume of distribution for escitalopram. CYP2C19 activity is a better predictor of escitalopram clearance than is Child-Pugh classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751419PMC
http://dx.doi.org/10.1208/aapsj080102DOI Listing

Publication Analysis

Top Keywords

hepatic impairment
20
cyp2c19 activity
16
child-pugh classification
12
pharmacokinetics escitalopram
8
escitalopram determined
8
nonlinear mixed
8
mixed modeling
8
moderate hepatic
8
hepatic
5
impairment
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!