Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons.

Nat Neurosci

Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.

Published: May 2006

Neural activity regulates the number and properties of GABAergic synapses in the brain, but the mechanisms underlying these changes are unclear. We found that blocking spike activity globally in developing hippocampal neurons from rats reduced the density of GABAergic terminals as well as the frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). Chronic inactivity later in development led to a reduction in the mIPSC amplitude, without any change in GABAergic synapse density. By contrast, hyperpolarizing or abolishing spike activity in single neurons did not alter GABAergic synaptic inputs. Suppressing activity in individual presynaptic GABAergic neurons also failed to decrease synaptic output. Our results indicate that GABAergic synapses are regulated by the level of activity in surrounding neurons. Notably, we found that the expression of GABAergic plasticity involves changes in the amount of neurotransmitter in individual vesicles.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn1677DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
8
gabaergic synapses
8
spike activity
8
gabaergic
7
neurons
5
activity
5
activity-dependent regulation
4
regulation inhibitory
4
inhibitory synaptic
4
synaptic transmission
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!