AI Article Synopsis

  • The study investigates the effects of osteogenic protein-1 (OP-1) on intervertebral disc degeneration using a rabbit model, focusing on changes observed through various imaging and analytical methods post-injection.
  • Previous research showed that OP-1 enhances the synthesis of disc components in healthy discs, but this study is the first to assess its impact on degenerated discs that have been artificially injured.
  • Results indicated that while anular puncture led to predictable disc narrowing, OP-1 injections successfully restored disc height up to 24 weeks, whereas the control injections of lactose did not produce any significant changes.

Article Abstract

Study Design: In vivo study of the effect of injection of osteogenic protein-1 (OP-1) on a rabbit anular needle puncture model of intervertebral disc (IVD) degeneration.

Objective: To study radiographic, magnetic resonance imaging (MRI), biochemical, and histologic changes in the rabbit IVD after injection of OP-1 into the nucleus pulposus in a needle puncture disc degeneration model.

Summary Of The Background Data: Growth factors, such as OP-1, have the ability to stimulate synthesis of proteoglycans and collagen in vitro. The in vivo injection of OP-1 into the normal rabbit IVD has increased disc height and proteoglycan content in the anulus fibrosus and nucleus pulposus. However, to our knowledge, no attempts have yet been made to determine the effects of these growth factors in an in vivo model of disc degeneration.

Methods: New Zealand adolescent white rabbits (n = 90, 8 for baseline evaluation, 82 at 8 times) received an anular puncture in 2 noncontiguous discs with an 18-gauge needle to induce disc degeneration. Four weeks later, either 5% lactose (10 microL) or OP-1 (100 microg in 10 microL 5% lactose) was injected into the center of the nucleus pulposus. The disc height was followed radiographically for up to 24 weeks after the injections. At the 2, 4, 8, 12, and 24-week times after the injection, rabbits were euthanized, and MRI of the harvested spinal columns was obtained to grade the degeneration. The discs injected with OP-1 or lactose and noninjected discs were subjected to biochemical and histologic analysis. The specimens at the 24-week time were limited to histologic evaluation.

Results: The anular puncture with a needle induced a consistent disc narrowing within 4 weeks. The injection of OP-1 induced a restoration of disc height at 6 weeks, which was sustained for the entire experimental period, up to 24 weeks after the injection. The injection of lactose alone did not change the course of disc narrowing over the same time. MRI grading score showed significant differences between the OP-1 and lactose groups at the 8, 12, and 24-week times, suggesting an increase in water content in the nucleus pulposus of the OP-1 group. The proteoglycan content of the nucleus pulposus and anulus fibrosus was significantly higher in the OP-1 group than in the control group. The degeneration grades of the punctured discs in the OP-1 group were significantly lower than those in the lactose group.

Conclusion: The results of this study show the feasibility of restoring degenerative rabbit discs by a single injection of OP-1 into the nucleus pulposus. Importantly, the effects of the OP-1 injection on disc height were sustained for up to 24 weeks. The metabolic changes in the cells, following a single injection, might be sustained and, thus, induce long-term changes in disc structure. An efficacy study in large animals is required to show further that the intradiscal injection of OP-1, or bone morphogenetic proteins or growth factors with similar properties would be useful for the structural restoration of the IVD in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.brs.0000206358.66412.7bDOI Listing

Publication Analysis

Top Keywords

nucleus pulposus
24
disc height
20
injection op-1
20
op-1
14
disc
13
injection
12
anular puncture
12
growth factors
12
op-1 group
12
osteogenic protein-1
8

Similar Publications

Aging is a risk factor for several chronic conditions, including intervertebral disc degeneration and associated back pain. Disc pathologies include loss of reticular-shaped nucleus pulposus cells, disorganization of annulus fibrosus lamellae, reduced disc height, and increased disc bulging. Sonic hedgehog, cytokeratin 19, and extracellular matrix proteins are markers of healthy disc.

View Article and Find Full Text PDF

Polysaccharide-based biomaterials for regenerative therapy in intervertebral disc degeneration.

Mater Today Bio

February 2025

Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China.

Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP).

View Article and Find Full Text PDF
Article Synopsis
  • Intervertebral disc degeneration (IVDD) is a major cause of low back pain, and while Sirt1 agonists show promise in protecting intervertebral discs, the exact mechanisms involved are not fully understood.
  • The study utilized various models to investigate the role of Sirt1 in disc cell inflammation and homeostasis, revealing that Sirt1 overexpression can inhibit inflammation and matrix degradation in degenerating discs.
  • Findings suggest that Sirt1 regulates inflammation by negatively impacting Lipocalin 2, signaling a potential pathway for developing treatments aimed at preventing IVDD progression.
View Article and Find Full Text PDF

Background: Previous research has shown that apoptosis of nucleus pulposus (NP) cells contributes to intervertebral disc degeneration (IDD) progression. Endoplasmic reticulum (ER) stress is a reaction to diverse stimuli in eukaryotes and is tightly contacted with apoptosis. Quercetin, a naturally occurring flavonoid, exerts protective effects against degenerative diseases via ER stress.

View Article and Find Full Text PDF

Ferristatin II protects nucleus pulposus against degeneration through inhibiting ferroptosis and activating HIF-1α pathway mediated mitophagy.

Int Immunopharmacol

January 2025

Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China. Electronic address:

Background: Nucleus pulposus (NP) degeneration represents a significant contributing factor in the pathogenesis of intervertebral disc (IVD) degeneration (IVDD), and is a key underlying mechanism in several lumbar spine pathologies. Nevertheless, the precise mechanisms that govern NP degeneration remain unclear. A significant contributing factor to IVDD has been identified as ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!