Human cardiac myosin autoantibodies impair myocyte contractility: a cause-and-effect relationship.

FASEB J

Department of Cardiothoracic Surgery, National Heart and Lung Institute, Imperial College School of Medicine, Royal Brompton and Harefield Trust, Harefield Hospital, Middlesex, UK.

Published: April 2006

The functional relevance of autoantibodies (Abs) against cardiac myosin (CM) in clinical idiopathic dilated cardiomyopathy (DCM) remains controversial. The study sought to determine effects of human Abs affinity-purified (AF) by immunoaffinity column chromotography on excitation-contraction coupling in isolated myocytes. Effects of CM-Abs from heart failure patients with DCM (n=19) and ischemic heart disease (IHD, n=19) on contractility, L-type Ca2+ current, and Ca2+ transients in continuously perfused rat ventricular myocytes were studied. Immunofluorescence studies using confocal microscopy were carried out to determine whether Abs were internalized. AF-Abs from either group did not differ in IgG titer but differed in their elution profiles. The IgG3 subclass response was higher in AF fractions from DCM (21%) than IHD (5%) patients. The Abs reduced the capacity of field-stimulated myocytes to contract in a dose-dependent manner. Inhibition of contraction, as a percentage of untreated cells, was greater with DCM than IHD-Abs (P=0.004), and the effect was independent of Ab titer. An increase in frequency of the beating myocytes (0.2 to 3.0 Hz) raised peak systolic and diastolic levels of [Ca2+]i of cells treated with DCM but not IHD-Abs (P<0.005). The AF-Abs were not internalized by myocytes and had no effect on L-type Ca2+ currents. The altered sensitivity of the myofilaments to [Ca2+]i by CM-Abs may represent a potential mechanism of autoantibody-mediated impairment in clinical DCM.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.04-3001comDOI Listing

Publication Analysis

Top Keywords

cardiac myosin
8
dcm ihd-abs
8
dcm
5
human cardiac
4
myosin autoantibodies
4
autoantibodies impair
4
impair myocyte
4
myocyte contractility
4
contractility cause-and-effect
4
cause-and-effect relationship
4

Similar Publications

Mavacamten is a cardiac myosin inhibitor for adults with obstructive hypertrophic cardiomyopathy (HCM). Dose optimization is performed 4 weeks after starting mavacamten, guided by periodic echo measurements of Valsalva left ventricular outflow tract gradient (VLVOTg) and left ventricular ejection fraction (LVEF). Previously, a population pharmacokinetic (PPK) model was developed and exposure-response (E-R) of VLVOTg (efficacy) and LVEF (safety) was used to identify the mavacamten titration regimen with the optimal benefit/risk ratio, now included in the US prescribing information.

View Article and Find Full Text PDF

In maximally Ca-activated demembranated fibres from the mammalian skeletal muscle, the depression of the force by lowering the temperature below the physiological level (~35 °C) is explained by the reduction of force in the myosin motor. Instead, cooling is reported to not affect the force per motor in Ca-activated cardiac trabeculae from the rat ventricle. Here, the mechanism of the cardiac performance depression by cooling is reinvestigated with fast sarcomere-level mechanics.

View Article and Find Full Text PDF

Since its first pathological description over 65 years ago, hypertrophic cardiomyopathy (HCM), with a worldwide prevalence of 1:500, has emerged as the most common genetically determined cardiac disease. Diagnostic work-up has dramatically improved over the last decades, from clinical suspicion and abnormal electrocardiographic findings to hemodynamic studies, echocardiography, contrast-enhanced cardiac magnetic resonance, and genetic testing. The implementation of screening programs and the use of implantable cardioverter defibrillators (ICDs) for high-risk individuals have notably reduced arrhythmic sudden deaths, altering the disease's mortality profile.

View Article and Find Full Text PDF

The Efficacy and Safety of Cardiac Myosin Inhibitors Versus Placebo in Patients with Symptomatic Obstructive Hypertrophic Cardiomyopathy: A Meta-Analysis of Randomized Controlled Trials.

Am J Cardiol

January 2025

Department of Cardiovascular Medicine, Baystate Medical Center and Division of Cardiovascular Medicine, University of Massachusetts-Baystate, Springfield, Massachusetts, USA. Electronic address: https://twitter.com/AGoldsweig.

Introduction: Obstructive hypertrophic cardiomyopathy (oHCM) is a genetic disorder characterized by myocardial hypertrophy, which can obstruct left ventricular outflow. Cardiac myosin inhibitors (CMIs) have emerged as a novel therapeutic agent targeting cardiac muscle hypercontractility.

Objective: To compare the efficacy and safety of CMIs mavacamten and aficamten vs.

View Article and Find Full Text PDF

Palmitic acid induces cardiomyocyte apoptosis by enhancing the KLF4/cMLCK signaling pathway.

Gene

January 2025

Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, China. Electronic address:

Hyperlipidemia and myocardial apoptosis caused by myocardial ischemia are the main causes of high mortality rates in cardiovascular diseases. Previous studies have indicated that Krüppel-like factor 4 (KLF4) is involved in the induction of cardiac myocyte apoptosis under various stress conditions. In current study, we discovered that KLF4 also participates in palmitic acid (PA)-induced cardiac myocyte apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!