Cell cycle arrest and stereotypic transcriptional responses to DNA damage induced by ionizing radiation (IR) were quantified in telomerase-expressing human diploid fibroblasts. Analysis of cytotoxicity demonstrated that 1.5 Gy IR inactivated colony formation by 40-45% in three fibroblast lines; this dose was used in all subsequent analyses. Fibroblasts exhibited > 90% arrest of progression from G2 to M at 2 hr post-IR and a similarly severe arrest of progression from G1 to S at 6 and 12 hr post-IR. Normal rates of DNA synthesis and mitosis 6 and 12 hr post-IR caused the S and M compartments to empty by > 70% at 24 hr. Global gene expression was analyzed in IR-treated cells. A microarray analysis algorithm, EPIG, identified nine IR-responsive patterns of gene expression that were common to the three fibroblast lines, including a dominant p53-dependent G1 checkpoint response. Many p53 target genes, such as CDKN1A, GADD45, BTG2, and PLK3, were significantly up-regulated at 2 hr post-IR. Many genes whose expression is regulated by E2F family transcription factors, including CDK2, CCNE1, CDC6, CDC2, MCM2, were significantly down-regulated at 24 hr post-IR. Numerous genes that participate in DNA metabolism were also markedly repressed in arrested fibroblasts apparently as a result of cell synchronization behind the G1 checkpoint. However, cluster and principal component analyses of gene expression revealed a profile 24 hr post-IR with similarity to that of G0 growth quiescence. The results reveal a highly stereotypic pattern of response to IR in human diploid fibroblasts that reflects primarily synchronization behind the G1 checkpoint but with prominent induction of additional markers of G0 quiescence such as GAS1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440780 | PMC |
http://dx.doi.org/10.1289/ehp.8026 | DOI Listing |
Elife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkiye.
Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Chem Biodivers
January 2025
Yatsen Global Innovation R&D Center, Yatsen Global Innovation R&D Center, No. 11 Building, No. 210, Wenshui Road, Jingan District, Shanghai, CHINA.
A new depside glucoside rosarugoside E (1), together with four known compounds punicalagin (2), corilagin (3), granatin B (4) and ellagic acid (5) were isolated from the ethanol extract of pomegranate (Punica granatum L.) flower. Their structures were identified based on careful analysis of various spectral data including UV, IR, HR-ESI-MS, 1D and 2D NMR.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology.
Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!