Characterisation and foaming properties of hydrolysates derived from rapeseed isolate.

Colloids Surf B Biointerfaces

INRA, Unité de Recherche sur les Protéines Végétales et leurs Interactions, BP 71627, 44316 Nantes Cedex 3, France.

Published: April 2006

Two hydrolysis methods used to obtain rapeseed isolate derivates were compared: chemical hydrolysis performed under alkaline conditions and pepsic proteolysis performed under acidic conditions. The mean molecular weights obtained for the hydrolysates varied from 26 to 2.5 kDa, depending on the level of hydrolysis. Further characterisation showed that, at the same level of hydrolysis, the chemical hydrolysates differed by their charges and hydrophobicity from those derived from enzymatic digestion. Analysis of the foaming properties showed, for both cases, that a limited degree of hydrolysis, around 3%, was sufficient to optimise the foaming properties of the isolate despite the different physicochemical properties of the peptides generated. The study of foaming properties at basic, neutral and acidic pHs showed that the hydrolysate solutions yielded dense foams which drained slowly and which maintained a very stable volume under the three pH conditions tested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2006.02.009DOI Listing

Publication Analysis

Top Keywords

foaming properties
16
rapeseed isolate
8
level hydrolysis
8
properties
5
hydrolysis
5
characterisation foaming
4
properties hydrolysates
4
hydrolysates derived
4
derived rapeseed
4
isolate hydrolysis
4

Similar Publications

Bulky cellulosic network structures (BRC) with densities between 60 and 130 g/l were investigated as a sustainable alternative to fossil-based foams for impact liners in bicycle helmets. The mechanical properties of BRC foams were characterized across a wide range of strain rates and incorporated into a validated finite element model of a hardshell helmet. Virtual impact tests simulating both consumer information and certification scenarios were conducted to compare BRC-lined helmets against conventional expanded polystyrene (EPS) designs.

View Article and Find Full Text PDF

Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing.

Int J Biol Macromol

January 2025

School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:

This study investigates the effects of ultrasound synergistic pH shift modification on the structural and functional properties of Hericium erinaceus (HE) proteins. The modification resulted in significant changes in the molecular structure of HE proteins, including increased solubility (49.69 % at pH 1.

View Article and Find Full Text PDF

Effect of fibrillation on the film-forming properties of soy protein isolate: Relationship between protein structural changes and the film-forming properties.

Food Chem

December 2024

College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China. Electronic address:

Protein fibrillation has great potential for enhancing the emulsification, foaming, and gelling properties of proteins. However, its effects on protein film-forming properties are less well understood. In this study, soy protein isolate (SPI) was subjected to fibrillation at pH 2.

View Article and Find Full Text PDF

Umbu-caja and soursop from the Northeast region of Brazil are rich in nutrients and bioactive compounds and are widely processed by the fruit agroindustry. However, there is a lack of research examining the composition and nutritional/technological potential of these co-product fruits. The present study evaluated the nutritional and technological characteristics of umbu-caja and soursop co-product flours (UCF and SCF, respectively), in addition to cytotoxicity in healthy cells.

View Article and Find Full Text PDF

Cellulose nanofiber-created air barrier enabling closed-cell foams prepared via oven-drying.

Carbohydr Polym

March 2025

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China. Electronic address:

Cellulose foams are renewable and biodegradable materials that are promising substitutes for plastic foams. However, the scale-up fabrication of cellulose foams is severely hindered by technological complexity and cost- and time-consuming drying processes. Here, we developed a facile and robust method to fabricate cellulose foams via oven-drying following surfactant-assisted mechanical foaming of cellulose nanofibers (CNFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!