Mechanisms of human minisatellite mutation in yeast.

Mutat Res

Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden.

Published: June 2006

Minisatellites are tandem repeat loci, with repeat units ranging in size from 5 bp to 100 bp. The total lengths of repeat arrays vary from about 0.5 kb to 30 kb, and excessive variability in allele length at human minisatellite loci is the result of germline-specific complex recombination events generating new length alleles. Minisatellite alleles also mutate to new lengths in somatic cells, but this occurs at a much lower rate than in the germline. Since recombination is involved in minisatellite mutation, the yeast Saccharomyces cerevisiae is a suitable model organism that has been employed to further dissect the molecular basis of mutation events at human minisatellites. These studies have shown that the mutational behaviour of a minisatellite in meiosis is not determined by the intrinsic properties of the repeat array, but are highly dependent on the position of the minisatellite in the genome. The processes for minisatellite mutation in yeast and humans are identical in the sense that mutation is indeed driven by meiotic recombination, but differ with regard to the types of structural changes that are generated by the recombination events. Tetrad analyses showed that inter-allelic transfers of repeats occur by conversion and not crossing over, and that several chromatids can be involved in successive recombination events in one meiosis, resulting in mutant alleles in several spores. It has been demonstrated that the genes SPO11 and RAD50, involved in the initiation of recombination events, are required for human minisatellite mutation in yeast meiosis. Intrinsic properties of the repeat array appear to determine the stability of human minisatellites in yeast mitosis, since mitotic mutation rates in yeast are highly variable between minisatellites. The repair genes RAD27 and DNA2 stabilise human minisatellites in yeast mitosis, while RAD5 has no effect on mitotic stability. MSH2 depresses human minisatellite frequency in meiotic cells of yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2006.01.010DOI Listing

Publication Analysis

Top Keywords

human minisatellite
16
minisatellite mutation
16
mutation yeast
16
recombination events
16
human minisatellites
12
minisatellite
9
yeast
8
intrinsic properties
8
properties repeat
8
repeat array
8

Similar Publications

Objective: Multiple-Locus Variable Number of Tandem Repeats (VNTR) Analysis (MLVA) is widely used to subtype pathogens causing foodborne and waterborne disease outbreaks. The MLVAType shiny application was previously designed to extract MLVA profiles of Vibrio cholerae isolates from whole-genome sequencing (WGS) data, and provide backward compatibility with traditional MLVA typing methods. The previous development and validation work was conducted using short (pair-end 300 and 150 nt long) reads from Illumina MiSeq and Hiseq sequencing.

View Article and Find Full Text PDF

Genetic diversity atlas of Brucella melitensis strains from Sichuan Province, China.

BMC Microbiol

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.

Human brucellosis is a re-emerging disease in Sichuan Province, China. In this study, bacteriology, conventional bio-typing, multi-locus sequence typing (MLST), and multiple locus variable-number tandem repeat analysis (MLVA) were applied to preliminarily characterize the strains in terms of genetic diversity and epidemiological links. A total of 101 Brucella strains were isolated from 16 cities (autonomous prefectures) from 2014 to 2021, and all of the strains were identified as Brucella melitensis bv.

View Article and Find Full Text PDF

In silico MLVA Analysis of Brucella melitensis from Human and Livestock in Iran.

Curr Microbiol

January 2025

Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute (RVSRI), Karaj, Iran.

Brucellosis, a zoonotic disease caused by Brucella spp. globally, is of great significance not only to livestock but also to public health. The most significant of the twelve species is Brucella melitensis.

View Article and Find Full Text PDF

Genome-wide investigation of VNTR motif polymorphisms in 8,222 genomes: Implications for biological regulation and human traits.

Cell Genom

December 2024

Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Article Synopsis
  • VNTRs (Variable number tandem repeats) are genetic features that differ in length and sequence, yet their functional effects are not fully understood.
  • The study presents a comprehensive VNTR polymorphism map with over 2.5 million VNTR length and 11 million VNTR motif polymorphisms found in 8,222 genomes, revealing a significant number of rare mutations.
  • It identifies specific VNTRs linked to gene expression changes and explores the potential influence of these polymorphisms on phenotypes and disease susceptibility, aiming to enhance the understanding of their biological roles.
View Article and Find Full Text PDF

We developed Del-read, an algorithm targeting medium-sized deletions (6-100 bp) in short-reads, which are challenging for current variant callers relying on alignment. Our focus was on Micro-Homolog mediated End Joining deletions (MMEJ-dels), prevalent in myeloid malignancies. MMEJ-dels follow a distinct pattern, occurring between two homologies, allowing us to generate a comprehensive list of MMEJ-dels in the exome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!