A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An antioxidant treatment potentially protects myocardial energy metabolism by regulating uncoupling protein 2 expression in a chronic beta-adrenergic stimulation rat model. | LitMetric

AI Article Synopsis

  • Excessive activation of beta-adrenergic receptors leads to cardiac damage and increased oxidative stress, raising questions about how this relates to uncoupling protein 2 (UCP2), which helps regulate energy efficiency in mitochondria.
  • The study found that chronic beta-adrenergic stimulation in rats resulted in an unhealthy heart-to-body weight ratio, higher levels of oxidative stress markers, and reduced energy molecule ratios (PCr/ATP), along with increased UCP2 expression.
  • Edaravone, a free radical scavenger, didn’t stop heart enlargement but successfully reduced oxidative stress markers and UCP2 expression, hinting at its potential for protecting heart energy metabolism during excessive beta-adrenergic stimulation.

Article Abstract

Excessive beta-adrenergic stimulation causes cardiac toxicity, which also contributes to cardiac oxidative stress. Although uncoupling protein 2 (UCP2), a member of the mitochondrial inner membrane carrier family, can regulate energy efficiency and oxidative stress in mitochondria, little data exist regarding interactions between UCP2 expression and beta-adrenergic stimulation induced cardiac oxidative damage. We investigated whether chronic beta-adrenergic stimulation induces myocardial energy metabolism abnormality via oxidative stress, including any role of UCP2. We also examined whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MIC-186; edaravone), a potent free radical scavenger, has cardioprotective effects against beta-adrenergic stimulation. Male Sprague-Dawley rats received isoproterenol (1.2 mg/kg/day) subcutaneously or/and edaravone (30 mg/kg/day) orally. Isoproterenol increased the heart/body weight ratio, accompanied by an increase in the level of myocardial thiobarbituric acid reactive substances (TBARS) and a decreased phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. Isoproterenol also markedly increased expressions of UCP2 mRNA (1.74 fold vs. non-isoproterenol) and protein (1.93 fold vs. non-isoproterenol). Edaravone had no apparent effect in hypertrophic responses, but significantly prevented both increases in TBARS and decreases in the PCr/ATP ratio. Edaravone also prevented increases in UCP2 mRNA (0.76 fold vs. isoproterenol) and protein (0.62 fold vs. isoproterenol) expressions against isoproterenol administration. Our results suggest that chronic beta-adrenergic stimulation induces myocardial energy inefficiency via excessive oxidative stress. The antioxidant effect of edaravone has potential to improve energy metabolism abnormalities against beta-adrenergic stimulation. Adequate regulation of UCP2 expression through artificial reduction of oxidative stress may play an important role in protection of the myocardial energy metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2006.02.029DOI Listing

Publication Analysis

Top Keywords

beta-adrenergic stimulation
28
oxidative stress
20
myocardial energy
16
energy metabolism
16
chronic beta-adrenergic
12
uncoupling protein
8
cardiac oxidative
8
ucp2 expression
8
stimulation induces
8
induces myocardial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!