Bathochromic shift in excitation spectrum was observed during emission measurement of Eu(DBM)(3)Phen containing dilute solution in methyl methacrylate (MMA). Detailed analysis shows that the reason of bathochromic shift is not the formation of molecule aggregation. It is caused by the intense absorption of ligands in the complex. Based on this model, a new method has been established to rectify excitation spectra before emission measurement of systems with different concentration. There exists a critical value of the absorption strength, which is 0.87 from calculation. Higher absorption than this value will cause the bathochromic shift of excitation peak. The wavelength whose absorbance is 0.87 will be the position of the strongest excitation peak. With 200 ppm and 500 ppm Eu(DBM)(3)Phen as the standard sample, relations between relative concentration and wavelength of excitation peak in Eu(DBM)(3)Phen system were deduced and plotted. Theoretical curves are in good agreement with experiment data except extra-dilute concentration, for partial decomplexation of the beta-diketonate and phenanthroline ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2006.01.018DOI Listing

Publication Analysis

Top Keywords

bathochromic shift
16
emission measurement
12
excitation peak
12
intense absorption
8
shift excitation
8
excitation
5
rectification excitation
4
bathochromic
4
excitation bathochromic
4
shift
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!