We explored the extent to which confabulators are susceptible to false recall and false recognition, and whether false recognition is reduced when memory for studied items is experimentally enhanced. Five confabulating patients, nine non-confabulating amnesics--including patients with (F amnesics) and without frontal-lobe dysfunction (NF amnesics)--and 14 control subjects underwent the DRM paradigm [Roediger, H. L., & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory and Cognition, 21, 803-814.] in two experimental conditions. In both conditions participants studied eight lists of semantic associates, and free recall was tested after the presentation of each list. In the Standard condition recognition was tested after the presentation of all the lists, whereas in the Proximal condition patients were administered a six-item recognition task after the presentation of each list. Participants also provided remember or know judgements, and described the content of their recollections. All groups of patients recalled a lower proportion of targets and critical lures than did control subjects, but confabulators recalled more words unrelated to the studied lists than did NF amnesics and controls. All groups of participants improved true recognition across conditions. However, whereas normal controls suppressed false recognition to critical lures in the Proximal compared to the Standard condition, and non-confabulating amnesics showed comparable gist-based false recognition, confabulators showed increased levels of false recognition to critical lures across conditions. Furthermore, NF amnesics significantly reduced false recognition to unrelated lures in the Proximal compared to the Standard condition, whereas confabulators were unable to suppress false recognition to unrelated lures across conditions. Analysis of the phenomenological experience showed that, unlike non-confabulating amnesics, confabulators characterized true and false memories with irrelevant information related to test items. Results are interpreted in light of confabulators' monitoring deficits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropsychologia.2006.02.008 | DOI Listing |
J Acoust Soc Am
January 2025
University of Bath, Bath, United Kingdom.
Improved hardware and processing techniques such as synthetic aperture sonar have led to imaging sonar with centimeter resolution. However, practical limitations and old systems limit the resolution in modern and legacy datasets. This study proposes using single image super resolution based on a conditioned diffusion model to map between images at different resolutions.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Clinical Medicine, Aarhus University Hospital, Aarhus N, 8200 Aarhus, Denmark.
Asymmetric dopaminergic degeneration of the striatum is a characteristic feature of Parkinson's disease, associated with right-left asymmetry in motor function. As such, studying asymmetry provides insights into progressive neurodegeneration between cerebral hemispheres. Given the impact of Lewy pathology on various neurotransmitter systems beyond the dopaminergic, it may be that other neuronal systems in the predominantly affected hemisphere are similarly affected.
View Article and Find Full Text PDFMem Cognit
January 2025
College of Education, Psychology and Social Work, Flinders University, GPO Box 2100, Adelaide, South Australia, 5042, Australia.
People show enhanced memory recall for disgust over fear, despite both being highly negative and arousing emotions. But does disgust's 'stickiness' in memory result in more false memories for disgust versus fear? Existing research finds low false-memory rates for disgust and fear, perhaps from using image lures depicting content unrelated to target images. Therefore, we presented 111 participants with disgust, fear, (and neutral) images during an attention-monitoring task.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia.
Identification of crystal structures is a crucial stage in the exploration of novel functional materials. This procedure is usually time-consuming and can be false-positive or false-negative. This necessitates a significant level of expert proficiency in the field of crystallography and, especially, requires deep experience in perovskite-related structures of hybrid perovskites.
View Article and Find Full Text PDFSci Rep
January 2025
College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong, 030800, China.
To address the challenges of unbalanced class labels with varying maturity levels of tomato fruits and low recognition accuracy for both fruits and stems in intelligent harvesting, we propose the YOLOX-SE-GIoU model for identifying tomato fruit maturity and stems. The SE focus module was incorporated into YOLOX to improve the identification accuracy, addressing the imbalance in the number of tomato fruits and stems. Additionally, we optimized the loss function to GIoU loss to minimize discrepancies across different scales of fruits and stems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!