Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fibronectin (FN) facilitates dermal fibroblast migration during normal wound healing. Proteolytic degradation of FN in chronic wounds hampers healing. Previously, three FN functional domains (FNfd) have been shown to be sufficient for optimal adult human dermal fibroblast migration. Here we report the development of an acellular hydrogel matrix comprised of the FNfds coupled to a hyaluronan (HA) backbone to stimulate wound repair. Employing Michael-type addition, the cysteine- tagged FNfds were first coupled to a homobifunctional PEG derivative. Thereafter, these PEG derivative FNfd solutions, containing bifunctional PEG-derivative crosslinker were coupled to thiol-modified HA (HA-DTPH) to obtain a crosslinked hydrogel matrix. When evaluated in vitro, these acellular hydrogels were completely cytocompatible. While spreading and proliferation of adult human dermal fibroblasts plateaued at higher FNfd bulk densities, their rapid and robust migration followed a typical bell-shaped response. When implanted in porcine cutaneous wounds, these acellular matrices, besides being completely biocompatible, induced rapid and en masse recruitment of stromal fibroblasts that was not observed with RGD-tethered or unmodified hydrogels. Such constructs might be of great benefit in clinical settings where rapid formation of new tissue is needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.2006.12.601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!