Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1086242PMC
http://dx.doi.org/10.1073/pnas.11.12.738DOI Listing

Publication Analysis

Top Keywords

radiation emitted
4
emitted optically
4
optically excited
4
excited zinc
4
zinc vapor
4
radiation
1
optically
1
excited
1
zinc
1
vapor
1

Similar Publications

Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).

View Article and Find Full Text PDF

This paper presents a lens-free imaging approach utilizing an array of light sources, capable of measuring the dielectric properties of many particles simultaneously. This method employs coplanar electrodes to induce velocity changes in flowing particles through dielectrophoretic forces, allowing the inference of individual particle properties from differential velocity changes. Both positive and negative forces are detectable.

View Article and Find Full Text PDF

Infrared thermography is an advanced technique that detects infrared light emitted by the body to map thermal changes related to blood flow. It is recognized for being noninvasive, fast, and reliable and is employed in the diagnosis and prevention of various medical conditions. In podiatry, it is utilized for managing diabetic foot ulcers, musculoskeletal injuries such as Achilles tendinopathy, and onychomycosis, among others.

View Article and Find Full Text PDF

Comprehensive determination of elements ranging from uranium to americium by hybrid measurement of fluorescent and spontaneously emitted characteristic X-rays.

Talanta

January 2025

National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba, Chiba, 263-8555, Japan; Department of Physics, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.

Natural uranium isotopes have extremely long half-lives; therefore, analytical methods based on the number of atoms, such as X-ray fluorescence (XRF) analysis, are suitable for uranium detection. However, XRF measurements cannot be used to detect the major isotopes of americium when present in amounts barely detectable using radiation measurements, owing to their relatively short half-lives. Because of α-decay-induced internal conversion, where orbital electrons are emitted instead of γ-rays, these nuclides emit characteristic X-rays.

View Article and Find Full Text PDF

Radiopharmaceutical therapy (RPT) enhances tumor response to immune checkpoint inhibitors (ICI) in preclinical models, but the effects of different radioisotopes have not been thoroughly compared. To evaluate mechanisms of response to RPT+ICI, we used NM600, an alkylphosphocholine selectively taken up by most tumors. Effects of Y-, Lu-, and Ac-NM600 + ICIs were compared in syngeneic murine models, B78 melanoma (poorly immunogenic) and MC38 colorectal cancer (immunogenic).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!