Chalcone synthase (CHS) catalyzes the first committed step in flavonoid biosynthesis, a major pathway of plant secondary metabolism. An allelic series for the Arabidopsis CHS locus, tt4, was previously characterized at the gene, protein, and end-product levels. In an effort to deduce the molecular basis for the observed phenotypes, homology models were generated for five of the tt4 proteins based on the crystal structure of CHS2 from Medicago. Molecular dynamics simulations provided insights into how even those substitutions that are not in close spatial proximity to key functional residues may still alter the architecture and dynamic movement of the enzyme, with dramatic effects on enzyme function. Simulations carried out at different temperatures pointed to optimized positioning of key residues in the active site or dimerization domain, rather than enhancement of overall structure, as underlying the higher activity of two temperature-sensitive variants at lower temperatures. Extending this type of analysis to account for protein-protein interactions may offer additional insights into the mechanisms by which single amino-acid substitutions can affect diverse aspects of protein function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-005-0071-1 | DOI Listing |
Plants (Basel)
January 2025
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
Djulis ( Koidz.), a member of the family plant, is noted for its vibrant appearance and significant ornamental value. However, the mechanisms underlying color variation in its spikes remain unexplored.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
Introduction: is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B).
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL, 32703, USA. Electronic address:
Lagerstroemia excelsa is a unique plant species from China, holds a significant aesthetic and economic value, and plays a crucial role in landscape architecture and horticulture. Thus far, there is little genetic and genomic information available about this species, which limits its use in development of new cultivars. In this study, a high-quality genome map of L.
View Article and Find Full Text PDFPlant Genome
March 2025
Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!