The goal of present investigation was determining peculiarities of oxidation metabolism in the case amoebiasis. The activity of pro- and anti-oxidative systems and content of NO in the blood of the patients with abscess, which developed in hepatic amoebiasis, has been studied. It was shown that in the patients' organism an increased generation of the free radicals of oxygen and nitrogen does occur. Intensification of peroxidation of the lipids (POL) and inactivation of antioxidation system of the organism were observed as well. Intensifying of the oxygen-nitrogen stress in the organism of the patients with amoebiasis, is induced by the activated neutrophyls accumulated in the focus of injury, which developed during invasion of amoebas. Low efficiency of the neutrophyl-induced oxidation explosion in amoebiasis, partly is determined by the highly active anti-oxidative system of these parasites. Their sensitivity to NO, allows suggesting of implementation of preparations--NO donors and modulators of NO production in the host organism, in treatment of the parasitic infections.

Download full-text PDF

Source

Publication Analysis

Top Keywords

oxygen-nitrogen stress
8
[the role
4
role oxygen-nitrogen
4
stress pathogenesis
4
pathogenesis amoebiasis]
4
amoebiasis] goal
4
goal investigation
4
investigation determining
4
determining peculiarities
4
peculiarities oxidation
4

Similar Publications

Reactive oxygen, nitrogen and sulfur species (RONSS) collectively encompasses a variety of energetically dynamic entities that emerge as inherent characteristics of aerobic life. This broad category includes reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). A conundrum arises from the indispensable role of RONSS in redox signalling, while its overproduction in the mitochondria poses deleterious effects.

View Article and Find Full Text PDF

: Cold atmospheric plasma (CAP) has been demonstrated as an adjustable device to generate various combinations of short-lived reactive oxygen and nitrogen species (RONS) and as a promising appliance for cancer therapy. This study investigated the effects of direct and indirect treatments of Argon-based CAP to cancer cells (A2058, A549, U2OS and BCC) and fibroblasts (NIH3T3 and L929) on cell viability. We also aimed to understand whether plasma-generated RONS were involved in this process using genetic evidence.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a complex acute respiratory illness with a high mortality rate. Reactive oxygen species (ROS) play a pivotal role in ALI, inducing cellular damage, inflammation, and oxidative stress, thereby exacerbating the severity of the injury. In this study, inspired by the "subtractive" strategy, we developed a fucoidan-based macrophage membrane bio-nanosystem, abbreviated as MF@CB, designed as an anti-inflammatory and antioxidant agent to alleviate lipopolysaccharide (LPS)-induced inflammation in ALI.

View Article and Find Full Text PDF

Biomimetic reactive oxygen/nitrogen nanoscavengers inhibit "ferroptosis storm" and modulate immune targeting for acute kidney injury.

J Control Release

January 2025

Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China. Electronic address:

Cisplatin (Cis), a potent chemotherapeutic agent, often causes acute kidney injury (AKI), limiting its clinical efficacy. RONS flares at the AKI site are a key factor in its progression. In this study, leveraging the advantages of cell membrane-coated biomimetic nanocarriers, we developed a multifunctional biomimetic nanodelivery system nano-RONS-sacrificial agent for AKI treatment.

View Article and Find Full Text PDF

Rhabdomyolysis (RM)-induced acute kidney injury (AKI) involves the release of large amounts of iron ions from excess myoglobin in the kidneys, which mediates the overproduction of reactive species with the onset of iron overload via the Fenton reaction, thus inducing ferroptosis and leading to renal dysfunction. Unfortunately, there are no effective treatments for AKI other than supportive care. Herein, we developed a multifunctional nanoplatform (MPD) by covalently bonding melanin nanoparticles (MP NPs) to deferoxamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!