Urocortin, a vasodilatory peptide related to corticotropin-releasing factor, may be an endogenous regulator of blood pressure. In vitro, rat tail arteries are relaxed by urocortin by a cAMP-mediated decrease in myofilament Ca2+ sensitivity through a still unclear mechanism. Here we show that contraction of intact mouse tail arteries induced with 42 mmol/L KCl or 0.5 micromol/L noradrenaline was associated with a approximately 2-fold increase in the phosphorylation of the regulatory subunit of myosin phosphatase (SMPP-1M), MYPT1, at Thr696, which was reversed in arteries relaxed with urocortin. Submaximally (pCa 6.1) contracted mouse tail arteries permeabilized with alpha-toxin were relaxed with urocortin by 39+/-3% at constant [Ca2+], which was associated with a decrease in myosin light chain (MLC20Ser19), MYPT1Thr696, and MYPT1Thr850 phosphorylation by 60%, 28%, and 52%, respectively. The Rho-associated kinase (ROK) inhibitor Y-27632 decreased MYPT1 phosphorylation by a similar extent. Inhibition of PP-2A with 3 nmol/L okadaic acid had no effect on MYPT1 phosphorylation, whereas inhibition of PP-1 with 3 micromol/L okadaic acid prevented dephosphorylation. Urocortin increased the rate of dephosphorylation of MLC20Ser19 approximately 2.2-fold but had no effect on the rate of contraction under conditions of, respectively, inhibited kinase and phosphatase activities. The effect of urocortin on MLC20Ser19 and MYPT1 phosphorylation was blocked by Rp-8-CPT-cAMPS and mimicked by Sp-5,6-DCl-cBIMPS. In summary, these results provide evidence that Ca(2+)-independent relaxation by urocortin can be attributed to a cAMP-mediated increased activity of SMPP-1M which at least in part is attributable to a decrease in the inhibitory phosphorylation of MYPT1.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.RES.0000219904.43852.3eDOI Listing

Publication Analysis

Top Keywords

tail arteries
16
mouse tail
12
relaxed urocortin
12
mypt1 phosphorylation
12
ca2+ sensitivity
8
myosin light
8
light chain
8
arteries relaxed
8
okadaic acid
8
urocortin
7

Similar Publications

The aim of this study was to conduct experiments using laser speckle contrast imaging (LSCI) technology to investigate the effects of high salt diet on renal vascular reactivity in mice. LSCI is a technology for monitoring blood flow based on the laser speckle principle. It has been widely used to detect microcirculatory functions in tissues such as the skin and brain.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates HS-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (NaS), which is a fast-releasing HS donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography.

View Article and Find Full Text PDF

Background: The pathogenesis of acute kidney injury (AKI) is not fully understood. Tax1-binding protein 1 (TAX1BP1) modulates inflammation and apoptosis through the NF-kB signaling pathway, however, its specific role in ischemic AKI remains unclear.

Methods: We injected a TAX1BP1 overexpression plasmid into the tail vein of male C57BL/6 mice, followed by clamping the bilateral renal arteries to induce AKI.

View Article and Find Full Text PDF

Hemosuccus pancreaticus (HP) is a rare, life-threatening cause of upper gastrointestinal bleeding, often linked to chronic pancreatitis and pseudoaneurysm rupture into the pancreatic duct. However, its occurrence in acute necrotizing pancreatitis with decompensated cirrhosis is exceedingly rare and poses significant diagnostic and treatment challenges. We report a case of a 34-year-old male with decompensated alcoholic cirrhosis who developed hemorrhagic shock from HP following acute necrotizing pancreatitis.

View Article and Find Full Text PDF

Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!