Background: Mesenchymal stem cells (MSC) are multipotent cells which can differentiate along osteogenic, chondrogenic, and adipogenic lineages. The present study was designed to investigate the influence of mechanical force as a specific physiological stress on the differentiation of (MSC) to osteoblast-like cells.
Methods: Human MSC were cultured in osteoinductive medium with or without cyclic uniaxial mechanical stimulation (2000 mustrain, 200 cycles per day, 1 Hz). Cultured cells were analysed for expression of collagen type I, osteocalcin, osteonectin, and CD90. To evaluate the biomineral formation the content of bound calcium in the cultures was determined.
Results: After 14 days in culture immunfluorescence staining revealed enhancement of collagen type I and osteonectin expression in response to mechanical stimulation. In contrast, mechanically stimulated cultures stained negative for CD90. In stimulated and unstimulated cultures an increase in the calcium content over time was observed. After 21 days in culture the calcium content in mechanical stimulated cultures was significantly higher compared to unstimulated control cultures.
Conclusion: These results demonstrate the influence of mechanical force on the differentiation of human MSC into osteoblast-like cells in vitro. While significant enhancement of the biomineral formation by mechanical stimulation is not detected before 21 days, effects on the extracellular matrix became already obvious after 14 days. The decrease of CD90 expression in mechanically stimulated cultures compared to unstimulated control cultures suggests that CD90 is only transiently expressed expression during the differentiation of MSC to osteoblast-like cells in culture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1483821 | PMC |
http://dx.doi.org/10.1186/1746-160X-2-8 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Preventive Dentistry, Division of Pediatric Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand.
The purpose of this study is to evaluate the optimum frequency of oscillatory fluid flow (OFF) for increasing osteogenesis in human dental pulp cells (DPCs) in an incubating rocking shaker. DPCs from 3 donors were cultured in an osteogenic induction medium (OIM) and mechanical stimulation was applied using an incubating rocking shaker at frequencies of 0 (control), 10, 20, 30, and 40 round per minute (RPM) for 1 h/day, 5 days/week. Cell proliferation was measured using total protein quantification, and osteogenic activity was measured by alkaline phosphatase (ALP) activity, calcium deposition, and collagen production on days 7, 14, and 21 of culture.
View Article and Find Full Text PDFCyborg Bionic Syst
July 2022
Institute of Apicultural Research, Chinese Academy of Agricultural Science, 100193, China.
The artificial locomotion control strategy is the fundamental technique to ensure the accomplishment of the preset assignments for cyborg insects. The existing research has recognized that the electrical stimulation applied to the optic lobes was an appropriate flight control strategy for small insects represented by honeybee. This control technique has been confirmed to be effective for honeybee flight initiation and cessation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Civil Engineering and Mechanics of Lanzhou University, Lanzhou 730000, China.
The controllable regulation of immune and osteogenic processes plays a critical role in the modification of biocompatible materials for tissue regeneration. In this study, titanium dioxide-europium coatings (MAO/Eu) were prepared on the surface of a titanium alloy (Ti-6Al-4V) a one-step process combining microarc oxidation (MAO) and doping. The incorporation of Eu significantly improved the hydrophilic and mechanical properties of the TiO coatings without altering their morphology.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
Electrochromic (EC) technology can adjust optical properties under electrical stimulation with broad applications in smart windows, displays, and camouflage. However, significant challenges remain in developing inorganic EC films with high durability, rapid response, and mechanical flexibility due to intrinsic brittleness and dense microstructure. Herein, a nanostructured quasiplanar heterointerface (Q-PHI) is first introduced into the electrode/EC interlayer to realize a robust, ultrafast switching tungsten trioxide (WO) EC film.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China.
Floating-gate transistors (FGTs), considered the most promising structure among three-terminal van der Waals (vdW) synaptic transistors, possess superiorities in improved data retention, excellent endurance properties, and multibit storage capacity, thereby overcoming the von Neumann bottleneck in conventional computing architectures. However, the dielectric layer in FGT devices typically depends on atomic layer deposition or mechanically transferred insulators, posing several challenges in terms of device compatibility, manufacturing complexity, and performance degradation. Therefore, it is crucial to discover dielectrics compatible with two-dimensional (2D) materials for further simplifying FGT structures and achieving optimal performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!