Background: Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC) signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca2+ channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP) from two taste-specific promoters to examine Ca2+ signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca2+ currents were assessed with Ca2+ imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells.

Results: Depolarization with high K+ resulted in an increase in intracellular Ca2+ in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca2+ responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na+ and K+ currents, but no evidence of Ca2+ currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na+ and K+ currents and a high threshold voltage-gated Ca2+ current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells from those expressing T1R3 or TRPM5. These data indicate that G protein-coupled taste receptors and conventional synaptic signaling mechanisms are expressed in separate populations of taste cells.

Conclusion: The taste receptor cells responsible for the transduction of bitter, sweet, and umami stimuli are unlikely to communicate with nerve fibers by using conventional chemical synapses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1444931PMC
http://dx.doi.org/10.1186/1741-7007-4-7DOI Listing

Publication Analysis

Top Keywords

taste cells
28
cells
16
taste
12
voltage-gated ca2+
12
protein-coupled taste
8
taste receptors
8
receptors lack
8
lack voltage-gated
8
taste receptor
8
receptor cells
8

Similar Publications

Ethanolic extract of Akhuni induces ROS-mediated apoptosis through ERK and AKT signalling pathways: Insights from metabolic profiling and molecular docking studies.

Free Radic Biol Med

December 2024

Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India. Electronic address:

Akhuni, an ethnic food of northeast India, induces ROS-mediated apoptosis in cancer cells. This is the first report on the anticancer potential of Akhuni. Akhuni is a traditional fermented soybean product known for its umami taste and delicacy, commonly used in Northeast India's cuisine.

View Article and Find Full Text PDF

Poultry scientists are constantly studying different breeds of cockerels that would be suitable for capon meat production. Capon meat, although not yet very popular, is characterized by exceptional taste qualities that could appeal to many customers. Obtaining the appropriate palatability, structure and tenderness of capon meat is possible thanks to the reduction in androgen levels following the castration of roosters.

View Article and Find Full Text PDF

The study aims to develop a plant-based food gel with a unique texture using callus cells and a mixture of xanthan (X) and konjac (K) gums. The effect of encapsulation of carrot callus cells (0.1 and 0.

View Article and Find Full Text PDF

Biocompatible Iron Oxide Nanoparticles Display Antiviral Activity Against Two Different Respiratory Viruses in Mice.

Int J Nanomedicine

December 2024

Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.

Background: Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!