We report a prospective study of 174 unselected adult de novo acute myeloid leukemia (AML) cases diagnosed using the WHO classification. Of those, 57 (33%) were AML with recurrent cytogenetic abnormalities, 41 were (24%) AML with multilineage dysplasia, 74 (42%) were AML not otherwise categorized, and two were acute leukemias of ambiguous lineage. Clonal cytogenetic abnormalities were detected in 64% of the WHO AML cases with t(15;17) (15%), t(8;21) (12%), +8 (11%), -7/del7q (8%) and del9q (5%) being the most common ones. The FLT3/ITD mutations (FMS-like tyrosine kinase 3/internal tandem duplication) were observed in 12% of the WHO AML cases, which is much lower than ones in the literature, while the 6% incidence of the FLT3-activating loop mutations (either FLT3/D835 or FLT3/I836) was comparable with others. Both mutations were associated with leukocytosis. Our study also suggests that the FLT3 mutations are biomarkers independent of cytogenetic characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0609.2006.00660.xDOI Listing

Publication Analysis

Top Keywords

aml cases
12
prospective study
8
study 174
8
novo acute
8
flt3 mutations
8
cytogenetic abnormalities
8
aml
6
mutations
5
174 novo
4
acute myelogenous
4

Similar Publications

RAD51 and RAD50 genetic polymorphisms from homologous recombination repair pathway are associated with disease outcomes and organ toxicities in AML.

Blood Res

December 2024

Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Meshkin Fam Street, P.O. Box, Shiraz, 71345-1744, Iran.

Background: Acute myeloid leukemia (AML) is a heterogeneous malignancy that responds to various therapies. The sensitivity of leukemia cells to chemotherapy is affected by the DNA damage response (DDR). In this study, we examined the association between RAD51 rs1801320, XRCC3 rs861539, NBS1 rs1805794, MRE11 rs569143, and RAD50 rs2299014 variants of the homologous recombination repair (HRR) pathway and AML outcomes.

View Article and Find Full Text PDF

Objectives: This study aimed to determine the frequency of RUNX1/RUNX1T1 gene rearrangement in acute myeloid leukemia (AML) patients by polymerase chain reaction (PCR) and analyze their clinical, hematological, and morphological features of positive patients.

Patients And Methods: A cross-sectional study was conducted in which newly diagnosed patients with AML were included in the study. A total of 101 AML cases were calculated from the World Health Organization (WHO) formula.

View Article and Find Full Text PDF

Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm characterized by peripheral blood monocytosis and bone marrow dysplasia. In approximately one-fourth of cases, CMML can demonstrate progression to acute myeloid leukemia (AML), referred to as AML ex CMML. We present a 58-year-old woman with a past medical history of idiopathic thrombocytopenic purpura (ITP) who demonstrated 24% bone marrow blasts on a repeat biopsy obtained two years after being diagnosed with CMML.

View Article and Find Full Text PDF

Background: Evaluating risk factors for bleeding events in robot-assisted partial nephrectomy (RAPN) for renal angiomyolipoma (RAML) is essential for improving surgical outcomes.

Methods: We performed a retrospective analysis of patients who underwent RAPN for renal masses between May 2019 and June 2023 at a single medical center, categorizing them into AML and non-AML groups. We assessed demographic data, perioperative complications, and postoperative outcomes.

View Article and Find Full Text PDF

Driver mutation landscape of acute myeloid leukemia provides insights for neoantigen-based immunotherapy.

Cancer Lett

December 2024

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Acute myeloid leukemia (AML) has lagged in benefiting from immunotherapies, primarily due to the scarcity of actionable AML-specific antigens. Driver mutations represent promising immunogenic targets, but a comprehensive characterization of the AML neoantigen landscape and their impact on patient outcomes and the AML immune microenvironment remain unclear. Herein, we conducted matched DNA and RNA sequencing on 304 AML patients and extensively integrated data from additional ∼2,500 AML cases, identifying 49 driver genes, notably characterized by a significant proportion of insertions and deletions (indels).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!