This article summarizes the proceedings of a symposium held at the 2005 Research Society on Alcoholism meeting. The initial presentation by Dr. Wallner provided evidence that selected GABA(A) receptors containing the delta subunit display sensitivity to low intoxicating ethanol concentrations and this sensitivity is further increased by a mutation in the cerebellar alpha6 subunit, found in alcohol-hypersensitive rats. Dr. Mameli reported that ethanol affects gamma-aminobutyric acid (GABA) function by affecting neural circuits that influence GABA release. Dr. Parsons presented data from electrophysiological and microdialysis investigations that ethanol is capable of releasing GABA from presynaptic terminals. Dr. Morrow demonstrated that systemic ethanol increases neuroactive steroids in brain, the absence of which alters various functional responses to ethanol. Dr. Criswell presented evidence that the ability of ethanol to increase GABA was apparent in some, but not all, brain regions indicative of regional specificity. Further, Dr. Criswell demonstrated that neurosteroids alone and when synthesized locally by ethanol act postsynaptically to enhance the effect of GABA released by ethanol in a region specific manner. Collectively, this series of reports support the GABAmimetic profile of acutely administered ethanol being dependent on several specific mechanisms distinct from a direct effect on the major synaptic isoforms of GABA(A) receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958095 | PMC |
http://dx.doi.org/10.1111/j.0145-6008.2006.00086.x | DOI Listing |
Iran J Med Sci
December 2024
Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Griffin Hospital, Derby, USA.
Ethylene glycol (C₂H₆O₂), a toxic alcohol commonly found in automotive antifreeze, de-icing solutions, and industrial coolants, can cause severe toxicity when ingested. Due to its sweet taste, it is often consumed accidentally or intentionally, leading to life-threatening consequences such as metabolic acidosis, acute kidney injury (AKI), and mortality. Prompt diagnosis and early treatment with antidotes such as fomepizole or ethanol, combined with hemodialysis, are essential in preventing severe outcomes.
View Article and Find Full Text PDFFront Pharmacol
January 2025
School of Pharmacy, Jiangsu University, Zhenjiang, China.
Introduction: The L. (PVL) and Hand.-Mazz.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Liver, Digestive System and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
Introduction: Grafts with alcohol-associated liver disease (ALD) subjected to prolonged cold ischaemia from donors after brain death (DBD) are typically unsuitable for transplantation. Here, we investigated the role of growth hormone (GH) in livers with ALD from DBDs and its relationship with vascular endothelial growth factor A (VEGFA) and VEGFB.
Methods: Livers from rats fed ethanol for 6 weeks and with brain death (BD) were cold stored for 24 h and subjected to reperfusion.
Front Med (Lausanne)
January 2025
Department of Acupuncture and Moxibustion, Zibo Hospital, Zibo, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common multi-factorial liver disease, and its incidence is gradually increasing worldwide. Many reports have revealed that intestinal flora plays a crucial role for the occurrence and development of MASLD, through mechanisms such as flora translocation, endogenous ethanol production, dysregulation of choline metabolism and bile acid, and endotoxemia. Here, we review the relationship between intestinal flora and MASLD, as well as interventions for MASLD, such as prebiotics, probiotics, synbiotics, and intestinal flora transplantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!